1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
|
---
title: "Analyzing Imputed Data with Multilevel Models and merTools"
author: "Jared Knowles"
date: "2020-06-22"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Imputation}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
## Introduction
Multilevel models are valuable in a wide array of problem areas that involve
non-experimental, or observational data. In many of these cases the data on
individual observations may be incomplete. In these situations, the analyst may
turn to one of many methods for filling in missing data depending on the specific
problem at hand, disciplinary norms, and prior research.
One of the most common cases is to use multiple imputation. Multiple imputation
involves fitting a model to the data and estimating the missing values for
observations. For details on multiple imputation, and a discussion of some of
the main implementations in R, look at the documentation and vignettes for the
`mice` and `Amelia` packages.
The key difficulty multiple imputation creates for users of multilevel models
is that the result of multiple imputation is K replicated datasets corresponding
to different estimated values for the missing data in the original dataset.
For the purposes of this vignette, I will describe how to use one flavor of
multiple imputation and the function in `merTools` to obtain estimates from a
multilevel model in the presence of missing and multiply imputed data.
## Missing Data and its Discontents
To demonstrate this workflow, we will use the `hsb` dataset in the `merTools`
package which includes data on the math achievement of a wide sample of students
nested within schools. The data has no missingness, so first we will simulate
some missing data.
```r
data(hsb)
# Create a function to randomly assign NA values
add_NA <- function(x, prob){
z <- rbinom(length(x), 1, prob = prob)
x[z==1] <- NA
return(x)
}
hsb$minority <- add_NA(hsb$minority, prob = 0.05)
table(is.na(hsb$minority))
#>
#> FALSE TRUE
#> 6868 317
hsb$female <- add_NA(hsb$female, prob = 0.05)
table(is.na(hsb$female))
#>
#> FALSE TRUE
#> 6802 383
hsb$ses <- add_NA(hsb$ses, prob = 0.05)
table(is.na(hsb$ses))
#>
#> FALSE TRUE
#> 6803 382
hsb$size <- add_NA(hsb$size, prob = 0.05)
table(is.na(hsb$size))
#>
#> FALSE TRUE
#> 6825 360
```
```r
# Load imputation library
library(Amelia)
# Declare the variables to include in the imputation data
varIndex <- names(hsb)
# Declare ID variables to be excluded from imputation
IDS <- c("schid", "meanses")
# Imputate
impute.out <- amelia(hsb[, varIndex], idvars = IDS,
noms = c("minority", "female"),
m = 5)
#> -- Imputation 1 --
#>
#> 1 2 3 4
#>
#> -- Imputation 2 --
#>
#> 1 2 3
#>
#> -- Imputation 3 --
#>
#> 1 2 3
#>
#> -- Imputation 4 --
#>
#> 1 2 3
#>
#> -- Imputation 5 --
#>
#> 1 2 3
summary(impute.out)
#>
#> Amelia output with 5 imputed datasets.
#> Return code: 1
#> Message: Normal EM convergence.
#>
#> Chain Lengths:
#> --------------
#> Imputation 1: 4
#> Imputation 2: 3
#> Imputation 3: 3
#> Imputation 4: 3
#> Imputation 5: 3
#>
#> Rows after Listwise Deletion: 5853
#> Rows after Imputation: 7185
#> Patterns of missingness in the data: 14
#>
#> Fraction Missing for original variables:
#> -----------------------------------------
#>
#> Fraction Missing
#> schid 0.00000000
#> minority 0.04411969
#> female 0.05330550
#> ses 0.05316632
#> mathach 0.00000000
#> size 0.05010438
#> schtype 0.00000000
#> meanses 0.00000000
```
```r
# Amelia is not available so let's just boostrap resample our data
impute.out <- vector(mode = "list", 5)
for (i in 1:5) {
impute.out[[i]] <- hsb[sample(nrow(hsb), nrow(hsb), replace = TRUE), ]
}
# Declare the variables to include in the imputation data
summary(impute.out)
```
## Fitting and Summarizing a Model List
Fitting a model is very similar
```r
fmla <- "mathach ~ minority + female + ses + meanses + (1 + ses|schid)"
mod <- lmer(fmla, data = hsb)
if(amelia_eval) {
modList <- lmerModList(fmla, data = impute.out$imputations)
} else {
# Use bootstrapped data instead
modList <- lmerModList(fmla, data = impute.out)
}
```
The resulting object `modList` is a list of `merMod` objects the same length as the number
of imputation datasets. This object is assigned the class of `merModList` and
`merTools` provides some convenience functions for reporting the results of
this object.
Using this, we can directly compare the model fit with missing data excluded to
the aggregate from the imputed models:
```r
fixef(mod) # model with dropped missing
#> (Intercept) minority female ses meanses
#> 14.149102 -2.868687 -1.318437 2.067309 2.833490
fixef(modList)
#> (Intercept) minority female ses meanses
#> 14.028792 -2.680352 -1.213086 1.966725 3.141636
```
```r
VarCorr(mod) # model with dropped missing
#> Groups Name Std.Dev. Corr
#> schid (Intercept) 1.54204
#> ses 0.52515 -0.765
#> Residual 5.98842
VarCorr(modList) # aggregate of imputed models
#> $stddev
#> $stddev$schid
#> (Intercept) ses
#> 1.5183804 0.6468874
#>
#>
#> $correlation
#> $correlation$schid
#> (Intercept) ses
#> (Intercept) 1.0000000 -0.5247666
#> ses -0.5247666 1.0000000
```
If you want to inspect the individual models, or you do not like taking the
mean across the imputation replications, you can take the `merModList` apart
easily:
```r
lapply(modList, fixef)
#> $imp1
#> (Intercept) minority female ses meanses
#> 13.976636 -2.587948 -1.170291 1.984663 3.170845
#>
#> $imp2
#> (Intercept) minority female ses meanses
#> 14.070484 -2.673140 -1.294932 1.959564 3.143996
#>
#> $imp3
#> (Intercept) minority female ses meanses
#> 14.040516 -2.728450 -1.215497 1.958265 3.134720
#>
#> $imp4
#> (Intercept) minority female ses meanses
#> 14.030150 -2.698588 -1.214679 1.997264 3.081103
#>
#> $imp5
#> (Intercept) minority female ses meanses
#> 14.026175 -2.713636 -1.170030 1.933870 3.177518
```
And, you can always operate on any single element of the list:
```r
fixef(modList[[1]])
#> (Intercept) minority female ses meanses
#> 13.976636 -2.587948 -1.170291 1.984663 3.170845
fixef(modList[[2]])
#> (Intercept) minority female ses meanses
#> 14.070484 -2.673140 -1.294932 1.959564 3.143996
```
## Output of a Model List
```r
print(modList)
#> $imp1
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#> Data: d
#>
#> REML criterion at convergence: 46328.3
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.2652 -0.7199 0.0371 0.7614 2.9108
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> schid (Intercept) 2.2763 1.5087
#> ses 0.3676 0.6063 -0.61
#> Residual 35.7568 5.9797
#> Number of obs: 7185, groups: schid, 160
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 13.9766 0.1724 81.089
#> minority -2.5879 0.1994 -12.978
#> female -1.1703 0.1576 -7.425
#> ses 1.9847 0.1182 16.787
#> meanses 3.1708 0.3537 8.966
#>
#> Correlation of Fixed Effects:
#> (Intr) minrty female ses
#> minority -0.324
#> female -0.482 0.012
#> ses -0.234 0.140 0.036
#> meanses -0.102 0.126 0.023 -0.237
#>
#> $imp2
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#> Data: d
#>
#> REML criterion at convergence: 46308.7
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.2162 -0.7183 0.0385 0.7576 2.9117
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> schid (Intercept) 2.286 1.5118
#> ses 0.443 0.6656 -0.47
#> Residual 35.611 5.9675
#> Number of obs: 7185, groups: schid, 160
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 14.0705 0.1727 81.485
#> minority -2.6731 0.1985 -13.467
#> female -1.2949 0.1578 -8.205
#> ses 1.9596 0.1202 16.299
#> meanses 3.1440 0.3574 8.797
#>
#> Correlation of Fixed Effects:
#> (Intr) minrty female ses
#> minority -0.326
#> female -0.482 0.019
#> ses -0.204 0.140 0.038
#> meanses -0.094 0.127 0.023 -0.231
#>
#> $imp3
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#> Data: d
#>
#> REML criterion at convergence: 46302.4
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.2651 -0.7164 0.0325 0.7615 2.9216
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> schid (Intercept) 2.3422 1.5304
#> ses 0.4413 0.6643 -0.46
#> Residual 35.5652 5.9637
#> Number of obs: 7185, groups: schid, 160
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 14.0405 0.1738 80.763
#> minority -2.7284 0.1990 -13.709
#> female -1.2155 0.1578 -7.702
#> ses 1.9583 0.1198 16.345
#> meanses 3.1347 0.3595 8.719
#>
#> Correlation of Fixed Effects:
#> (Intr) minrty female ses
#> minority -0.325
#> female -0.481 0.022
#> ses -0.209 0.143 0.044
#> meanses -0.092 0.126 0.021 -0.226
#>
#> $imp4
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#> Data: d
#>
#> REML criterion at convergence: 46302
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.2610 -0.7229 0.0305 0.7612 2.9166
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> schid (Intercept) 2.3036 1.5178
#> ses 0.3951 0.6286 -0.62
#> Residual 35.6111 5.9675
#> Number of obs: 7185, groups: schid, 160
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 14.0302 0.1728 81.179
#> minority -2.6986 0.1985 -13.592
#> female -1.2147 0.1573 -7.721
#> ses 1.9973 0.1190 16.784
#> meanses 3.0811 0.3544 8.693
#>
#> Correlation of Fixed Effects:
#> (Intr) minrty female ses
#> minority -0.326
#> female -0.481 0.021
#> ses -0.246 0.140 0.040
#> meanses -0.104 0.126 0.023 -0.235
#>
#> $imp5
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#> Data: d
#>
#> REML criterion at convergence: 46324.3
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.2703 -0.7181 0.0316 0.7649 2.9098
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> schid (Intercept) 2.3200 1.5231
#> ses 0.4484 0.6696 -0.46
#> Residual 35.6782 5.9731
#> Number of obs: 7185, groups: schid, 160
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 14.0262 0.1734 80.890
#> minority -2.7136 0.1982 -13.689
#> female -1.1700 0.1577 -7.417
#> ses 1.9339 0.1204 16.060
#> meanses 3.1775 0.3594 8.842
#>
#> Correlation of Fixed Effects:
#> (Intr) minrty female ses
#> minority -0.329
#> female -0.480 0.026
#> ses -0.200 0.141 0.036
#> meanses -0.095 0.126 0.026 -0.228
```
```r
summary(modList)
#> [1] "Linear mixed model fit by REML"
#> Model family:
#> lmer(formula = mathach ~ minority + female + ses + meanses +
#> (1 + ses | schid), data = d)
#>
#> Fixed Effects:
#> estimate std.error statistic df
#> (Intercept) 14.029 0.174 80.566 99310.593
#> female -1.213 0.160 -7.574 16493.051
#> meanses 3.142 0.358 8.769 259740.570
#> minority -2.680 0.202 -13.289 18540.839
#> ses 1.967 0.120 16.372 166028.049
#>
#> Random Effects:
#>
#> Error Term Standard Deviations by Level:
#>
#> schid
#> (Intercept) ses
#> 1.518 0.647
#>
#>
#> Error Term Correlations:
#>
#> schid
#> (Intercept) ses
#> (Intercept) 1.000 -0.525
#> ses -0.525 1.000
#>
#>
#> Residual Error = 5.970
#>
#> ---Groups
#> number of obs: 7185, groups: schid, 160
#>
#> Model Fit Stats
#> AIC = 46331.1
#> Residual standard deviation = 5.970
```
```r
fastdisp(modList)
#> lmer(formula = mathach ~ minority + female + ses + meanses +
#> (1 + ses | schid), data = d)
#> estimate std.error
#> (Intercept) 14.03 0.17
#> female -1.21 0.16
#> meanses 3.14 0.36
#> minority -2.68 0.20
#> ses 1.97 0.12
#>
#> Error terms:
#> Groups Name Std.Dev. Corr
#> schid (Intercept) 1.52
#> ses 0.65 -0.61
#> Residual 5.97
#> ---
#> number of obs: 7185, groups: schid, 160
#> AIC = 46331.1---
```
The standard errors reported for the model list include a correction, Rubin's
correction (see documentation), which adjusts for the within and between imputation
set variance as well.
## Specific Model Information Summaries
```r
modelRandEffStats(modList)
#> term group estimate std.error
#> 1 cor_(Intercept).ses.schid schid -0.5247666 0.084101895
#> 2 sd_(Intercept).schid schid 1.5183804 0.008713530
#> 3 sd_Observation.Residual Residual 5.9703034 0.006244066
#> 4 sd_ses.schid schid 0.6468874 0.028062351
modelFixedEff(modList)
#> term estimate std.error statistic df
#> 1 (Intercept) 14.028792 0.1741275 80.566201 99310.59
#> 2 female -1.213086 0.1601572 -7.574345 16493.05
#> 3 meanses 3.141636 0.3582833 8.768580 259740.57
#> 4 minority -2.680352 0.2017037 -13.288566 18540.84
#> 5 ses 1.966725 0.1201239 16.372467 166028.05
VarCorr(modList)
#> $stddev
#> $stddev$schid
#> (Intercept) ses
#> 1.5183804 0.6468874
#>
#>
#> $correlation
#> $correlation$schid
#> (Intercept) ses
#> (Intercept) 1.0000000 -0.5247666
#> ses -0.5247666 1.0000000
```
### Diagnostics of List Components
```r
modelInfo(mod)
#> n.obs n.lvls AIC sigma
#> 1 6160 1 39764.15 5.98842
```
Let's apply this to our model list.
```r
lapply(modList, modelInfo)
#> $imp1
#> n.obs n.lvls AIC sigma
#> 1 7185 1 46346.34 5.979699
#>
#> $imp2
#> n.obs n.lvls AIC sigma
#> 1 7185 1 46326.72 5.967532
#>
#> $imp3
#> n.obs n.lvls AIC sigma
#> 1 7185 1 46320.43 5.963655
#>
#> $imp4
#> n.obs n.lvls AIC sigma
#> 1 7185 1 46319.96 5.967506
#>
#> $imp5
#> n.obs n.lvls AIC sigma
#> 1 7185 1 46342.27 5.973125
```
### Model List Generics
```r
summary(modList)
#> [1] "Linear mixed model fit by REML"
#> Model family:
#> lmer(formula = mathach ~ minority + female + ses + meanses +
#> (1 + ses | schid), data = d)
#>
#> Fixed Effects:
#> estimate std.error statistic df
#> (Intercept) 14.029 0.174 80.566 99310.593
#> female -1.213 0.160 -7.574 16493.051
#> meanses 3.142 0.358 8.769 259740.570
#> minority -2.680 0.202 -13.289 18540.839
#> ses 1.967 0.120 16.372 166028.049
#>
#> Random Effects:
#>
#> Error Term Standard Deviations by Level:
#>
#> schid
#> (Intercept) ses
#> 1.518 0.647
#>
#>
#> Error Term Correlations:
#>
#> schid
#> (Intercept) ses
#> (Intercept) 1.000 -0.525
#> ses -0.525 1.000
#>
#>
#> Residual Error = 5.970
#>
#> ---Groups
#> number of obs: 7185, groups: schid, 160
#>
#> Model Fit Stats
#> AIC = 46331.1
#> Residual standard deviation = 5.970
```
```r
modelFixedEff(modList)
#> term estimate std.error statistic df
#> 1 (Intercept) 14.028792 0.1741275 80.566201 99310.59
#> 2 female -1.213086 0.1601572 -7.574345 16493.05
#> 3 meanses 3.141636 0.3582833 8.768580 259740.57
#> 4 minority -2.680352 0.2017037 -13.288566 18540.84
#> 5 ses 1.966725 0.1201239 16.372467 166028.05
```
```r
ranef(modList)
#> $schid
#> (Intercept) ses
#> 1224 -0.157795533 0.0451127840
#> 1288 -0.044476754 0.0191957958
#> 1296 -0.126472259 0.0218757135
#> 1308 0.064357632 -0.0167977336
#> 1317 0.088861755 -0.0350837887
#> 1358 -0.301385760 0.1053888143
#> 1374 -0.350736225 0.1064976917
#> 1433 0.307310844 -0.0444663946
#> 1436 0.284513686 -0.0602282100
#> 1461 -0.045882842 0.0719067703
#> 1462 0.348424677 -0.1562366964
#> 1477 0.042686687 -0.0406549686
#> 1499 -0.293156885 0.0838236409
#> 1637 -0.097080749 0.0324268391
#> 1906 0.048446937 -0.0150064112
#> 1909 -0.052969237 0.0205894104
#> 1942 0.209581012 -0.0525053879
#> 1946 -0.042287233 0.0350616964
#> 2030 -0.429112816 0.0588461805
#> 2208 -0.024593477 0.0228554436
#> 2277 0.309800057 -0.1834173408
#> 2305 0.550610497 -0.2049548526
#> 2336 0.142313348 -0.0290535691
#> 2458 0.245993091 -0.0255602587
#> 2467 -0.222494935 0.0640753511
#> 2526 0.449997476 -0.1312121315
#> 2626 0.027751982 0.0238061610
#> 2629 0.335613322 -0.0942540137
#> 2639 0.094386542 -0.0820201077
#> 2651 -0.393517983 0.1350175898
#> 2655 0.640384122 -0.1435806679
#> 2658 -0.243275105 0.0607205634
#> 2755 0.135787228 -0.0631922841
#> 2768 -0.268666958 0.0917130815
#> 2771 0.033436716 0.0272030521
#> 2818 -0.018785461 0.0214043728
#> 2917 0.152738008 -0.0762445189
#> 2990 0.448844959 -0.0935887501
#> 2995 -0.235287167 0.0148768819
#> 3013 -0.106680710 0.0516779815
#> 3020 0.090727137 -0.0308716386
#> 3039 0.243996619 -0.0435977108
#> 3088 -0.042231336 -0.0122411932
#> 3152 -0.034103349 0.0356155581
#> 3332 -0.259777846 0.0305681683
#> 3351 -0.461248418 0.0996270996
#> 3377 0.142496875 -0.1211102758
#> 3427 0.841386693 -0.2339682964
#> 3498 0.024887322 -0.0537205006
#> 3499 -0.119817169 0.0080680143
#> 3533 -0.149220939 0.0010719643
#> 3610 0.297746069 -0.0014053243
#> 3657 -0.069261452 0.0633533767
#> 3688 -0.061555723 0.0315302117
#> 3705 -0.427141188 0.0523408834
#> 3716 0.061285137 0.0757199239
#> 3838 0.485386271 -0.1598435378
#> 3881 -0.309537022 0.0860578519
#> 3967 -0.056525049 0.0445060296
#> 3992 0.075297122 -0.0637600889
#> 3999 -0.055817277 0.0457642823
#> 4042 -0.197812746 0.0313570583
#> 4173 -0.082777595 0.0432272733
#> 4223 0.266360906 -0.0698408106
#> 4253 -0.002838943 -0.0732012994
#> 4292 0.495110532 -0.1764400335
#> 4325 0.021047068 0.0103006817
#> 4350 -0.262817422 0.1005502052
#> 4383 -0.234756733 0.0855789496
#> 4410 -0.063023118 0.0284242048
#> 4420 0.205737288 -0.0273245989
#> 4458 -0.043787877 -0.0105867355
#> 4511 0.216198981 -0.0590666506
#> 4523 -0.253392354 0.0623924215
#> 4530 0.061007622 -0.0141412262
#> 4642 0.120939515 -0.0012115746
#> 4868 -0.225562808 0.0092349324
#> 4931 -0.151489897 -0.0105474646
#> 5192 -0.244884720 0.0662313861
#> 5404 -0.267282666 0.0289963481
#> 5619 -0.088591305 0.1050668069
#> 5640 0.066352031 0.0263435429
#> 5650 0.496007374 -0.1520751279
#> 5667 -0.291090712 0.0849233773
#> 5720 0.091591369 -0.0101163734
#> 5761 0.134959735 0.0032009015
#> 5762 -0.090505308 0.0088358929
#> 5783 -0.093105251 0.0419784658
#> 5815 -0.180032189 0.0567256485
#> 5819 -0.324949316 0.0664861258
#> 5838 -0.038168235 0.0005292275
#> 5937 0.040928181 -0.0176469977
#> 6074 0.361576085 -0.1098990853
#> 6089 0.230329688 -0.0455594013
#> 6144 -0.272422991 0.0809874046
#> 6170 0.279563058 -0.0545497420
#> 6291 0.181117957 -0.0356960554
#> 6366 0.193708113 -0.0594649551
#> 6397 0.183418370 -0.0437084542
#> 6415 -0.082399227 0.0577125726
#> 6443 -0.098586726 -0.0413265591
#> 6464 -0.006930839 -0.0110530398
#> 6469 0.342855296 -0.0923368634
#> 6484 0.099185197 -0.0332806845
#> 6578 0.317864661 -0.0765973348
#> 6600 -0.226249834 0.1266724638
#> 6808 -0.331443100 0.0659644663
#> 6816 0.197569880 -0.0620211170
#> 6897 0.032147952 0.0304756664
#> 6990 -0.298601140 0.0257587587
#> 7011 0.061065847 0.0284790004
#> 7101 -0.108095935 0.0111424320
#> 7172 -0.200642122 0.0236336161
#> 7232 -0.031354643 0.0561977605
#> 7276 -0.071317368 0.0498968187
#> 7332 0.036955530 0.0115037701
#> 7341 -0.284857609 0.0196994369
#> 7342 0.071738535 -0.0234087825
#> 7345 -0.246456373 0.0990572950
#> 7364 0.281626879 -0.0887844808
#> 7635 0.067695672 -0.0045773702
#> 7688 0.594207877 -0.1591233000
#> 7697 0.094743826 -0.0012484228
#> 7734 0.033326916 0.0503135537
#> 7890 -0.289921123 0.0298758440
#> 7919 -0.149007142 0.0495897913
#> 8009 -0.244371368 0.0271887171
#> 8150 0.064657992 -0.0398760061
#> 8165 0.175619037 -0.0474879689
#> 8175 0.106248119 -0.0365013872
#> 8188 -0.114131805 0.0573622366
#> 8193 0.542176501 -0.1395995719
#> 8202 -0.224686594 0.0855379047
#> 8357 0.189677518 -0.0218034980
#> 8367 -0.753895035 0.1525305352
#> 8477 0.074297200 0.0168614134
#> 8531 -0.205339027 0.0413324032
#> 8627 -0.378034984 0.0380125197
#> 8628 0.607613395 -0.1688034840
#> 8707 -0.085939080 0.0478432971
#> 8775 -0.201067311 0.0092501597
#> 8800 -0.001740915 0.0111088913
#> 8854 -0.559785941 0.1509853643
#> 8857 0.264207656 -0.0929013046
#> 8874 0.185982681 -0.0115522511
#> 8946 -0.167392474 0.0227325069
#> 8983 -0.141209027 0.0250288618
#> 9021 -0.240450945 0.0425264700
#> 9104 -0.041255449 0.0031660145
#> 9158 -0.281158323 0.1121016974
#> 9198 0.321737680 -0.0485854075
#> 9225 0.003967024 0.0297600149
#> 9292 0.236024371 -0.0736002233
#> 9340 -0.017193371 0.0168080235
#> 9347 -0.055089446 0.0615863493
#> 9359 -0.048633702 -0.0193351608
#> 9397 -0.475984110 0.1004098564
#> 9508 0.106191420 -0.0031993549
#> 9550 -0.265395980 0.0857421977
#> 9586 -0.141583246 0.0331380964
```
## Cautions and Notes
Often it is desirable to include aggregate values in the level two or level three
part of the model such as level 1 SES and level 2 mean SES for the group. In
cases where there is missingness in either the level 1 SES values, or in the
level 2 mean SES values, caution and careful thought need to be given to how to
proceed with the imputation routine.
|