File: imputation.Rmd

package info (click to toggle)
r-cran-mertools 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,716 kB
  • sloc: sh: 13; makefile: 2
file content (792 lines) | stat: -rw-r--r-- 23,968 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
---
title: "Analyzing Imputed Data with Multilevel Models and merTools"
author: "Jared Knowles"
date: "2020-06-22"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Imputation}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---




## Introduction

Multilevel models are valuable in a wide array of problem areas that involve
non-experimental, or observational data. In many of these cases the data on
individual observations may be incomplete. In these situations, the analyst may
turn to one of many methods for filling in missing data depending on the specific
problem at hand, disciplinary norms, and prior research.

One of the most common cases is to use multiple imputation. Multiple imputation
involves fitting a model to the data and estimating the missing values for
observations. For details on multiple imputation, and a discussion of some of
the main implementations in R, look at the documentation and vignettes for the
`mice` and `Amelia` packages.

The key difficulty multiple imputation creates for users of multilevel models
is that the result of multiple imputation is K replicated datasets corresponding
to different estimated values for the missing data in the original dataset.

For the purposes of this vignette, I will describe how to use one flavor of
multiple imputation and the function in `merTools` to obtain estimates from a
multilevel model in the presence of missing and multiply imputed data.


## Missing Data and its Discontents

To demonstrate this workflow, we will use the `hsb` dataset in the `merTools`
package which includes data on the math achievement of a wide sample of students
nested within schools. The data has no missingness, so first we will simulate
some missing data.


```r
data(hsb)

# Create a function to randomly assign NA values

add_NA <- function(x, prob){
  z <- rbinom(length(x), 1, prob = prob)
  x[z==1] <- NA
  return(x)
}

hsb$minority <- add_NA(hsb$minority, prob = 0.05)
table(is.na(hsb$minority))
#> 
#> FALSE  TRUE 
#>  6868   317

hsb$female <- add_NA(hsb$female, prob = 0.05)
table(is.na(hsb$female))
#> 
#> FALSE  TRUE 
#>  6802   383

hsb$ses <- add_NA(hsb$ses, prob = 0.05)
table(is.na(hsb$ses))
#> 
#> FALSE  TRUE 
#>  6803   382

hsb$size <- add_NA(hsb$size, prob = 0.05)
table(is.na(hsb$size))
#> 
#> FALSE  TRUE 
#>  6825   360
```


```r
# Load imputation library
library(Amelia)
# Declare the variables to include in the imputation data
varIndex <- names(hsb)
# Declare ID variables to be excluded from imputation
IDS <- c("schid", "meanses")
# Imputate
impute.out <- amelia(hsb[, varIndex], idvars = IDS,
                         noms = c("minority", "female"),
                         m = 5)
#> -- Imputation 1 --
#> 
#>   1  2  3  4
#> 
#> -- Imputation 2 --
#> 
#>   1  2  3
#> 
#> -- Imputation 3 --
#> 
#>   1  2  3
#> 
#> -- Imputation 4 --
#> 
#>   1  2  3
#> 
#> -- Imputation 5 --
#> 
#>   1  2  3
summary(impute.out)
#> 
#> Amelia output with 5 imputed datasets.
#> Return code:  1 
#> Message:  Normal EM convergence. 
#> 
#> Chain Lengths:
#> --------------
#> Imputation 1:  4
#> Imputation 2:  3
#> Imputation 3:  3
#> Imputation 4:  3
#> Imputation 5:  3
#> 
#> Rows after Listwise Deletion:  5853 
#> Rows after Imputation:  7185 
#> Patterns of missingness in the data:  14 
#> 
#> Fraction Missing for original variables: 
#> -----------------------------------------
#> 
#>          Fraction Missing
#> schid          0.00000000
#> minority       0.04411969
#> female         0.05330550
#> ses            0.05316632
#> mathach        0.00000000
#> size           0.05010438
#> schtype        0.00000000
#> meanses        0.00000000
```


```r
# Amelia is not available so let's just boostrap resample our data
impute.out <- vector(mode = "list", 5)

for (i in 1:5) {
  impute.out[[i]] <- hsb[sample(nrow(hsb), nrow(hsb), replace = TRUE), ]
}

# Declare the variables to include in the imputation data
summary(impute.out)
```


## Fitting and Summarizing a Model List

Fitting a model is very similar


```r
fmla <- "mathach ~ minority + female + ses + meanses + (1 + ses|schid)"
mod <- lmer(fmla, data = hsb)
if(amelia_eval) {
  modList <- lmerModList(fmla, data = impute.out$imputations)
} else {
  # Use bootstrapped data instead
  modList <- lmerModList(fmla, data = impute.out)
}
```


The resulting object `modList` is a list of `merMod` objects the same length as the number
of imputation datasets. This object is assigned the class of `merModList` and
`merTools` provides some convenience functions for reporting the results of
this object.

Using this, we can directly compare the model fit with missing data excluded to
the aggregate from the imputed models:


```r
fixef(mod) # model with dropped missing
#> (Intercept)    minority      female         ses     meanses 
#>   14.149102   -2.868687   -1.318437    2.067309    2.833490
fixef(modList)
#> (Intercept)    minority      female         ses     meanses 
#>   14.028792   -2.680352   -1.213086    1.966725    3.141636
```


```r
VarCorr(mod) # model with dropped missing
#>  Groups   Name        Std.Dev. Corr  
#>  schid    (Intercept) 1.54204        
#>           ses         0.52515  -0.765
#>  Residual             5.98842
VarCorr(modList) # aggregate of imputed models
#> $stddev
#> $stddev$schid
#> (Intercept)         ses 
#>   1.5183804   0.6468874 
#> 
#> 
#> $correlation
#> $correlation$schid
#>             (Intercept)        ses
#> (Intercept)   1.0000000 -0.5247666
#> ses          -0.5247666  1.0000000
```

If you want to inspect the individual models, or you do not like taking the
mean across the imputation replications, you can take the `merModList` apart
easily:


```r
lapply(modList, fixef)
#> $imp1
#> (Intercept)    minority      female         ses     meanses 
#>   13.976636   -2.587948   -1.170291    1.984663    3.170845 
#> 
#> $imp2
#> (Intercept)    minority      female         ses     meanses 
#>   14.070484   -2.673140   -1.294932    1.959564    3.143996 
#> 
#> $imp3
#> (Intercept)    minority      female         ses     meanses 
#>   14.040516   -2.728450   -1.215497    1.958265    3.134720 
#> 
#> $imp4
#> (Intercept)    minority      female         ses     meanses 
#>   14.030150   -2.698588   -1.214679    1.997264    3.081103 
#> 
#> $imp5
#> (Intercept)    minority      female         ses     meanses 
#>   14.026175   -2.713636   -1.170030    1.933870    3.177518
```

And, you can always operate on any single element of the list:


```r
fixef(modList[[1]])
#> (Intercept)    minority      female         ses     meanses 
#>   13.976636   -2.587948   -1.170291    1.984663    3.170845
fixef(modList[[2]])
#> (Intercept)    minority      female         ses     meanses 
#>   14.070484   -2.673140   -1.294932    1.959564    3.143996
```

## Output of a Model List


```r
print(modList)
#> $imp1
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#>    Data: d
#> 
#> REML criterion at convergence: 46328.3
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -3.2652 -0.7199  0.0371  0.7614  2.9108 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev. Corr 
#>  schid    (Intercept)  2.2763  1.5087        
#>           ses          0.3676  0.6063   -0.61
#>  Residual             35.7568  5.9797        
#> Number of obs: 7185, groups:  schid, 160
#> 
#> Fixed effects:
#>             Estimate Std. Error t value
#> (Intercept)  13.9766     0.1724  81.089
#> minority     -2.5879     0.1994 -12.978
#> female       -1.1703     0.1576  -7.425
#> ses           1.9847     0.1182  16.787
#> meanses       3.1708     0.3537   8.966
#> 
#> Correlation of Fixed Effects:
#>          (Intr) minrty female ses   
#> minority -0.324                     
#> female   -0.482  0.012              
#> ses      -0.234  0.140  0.036       
#> meanses  -0.102  0.126  0.023 -0.237
#> 
#> $imp2
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#>    Data: d
#> 
#> REML criterion at convergence: 46308.7
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -3.2162 -0.7183  0.0385  0.7576  2.9117 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev. Corr 
#>  schid    (Intercept)  2.286   1.5118        
#>           ses          0.443   0.6656   -0.47
#>  Residual             35.611   5.9675        
#> Number of obs: 7185, groups:  schid, 160
#> 
#> Fixed effects:
#>             Estimate Std. Error t value
#> (Intercept)  14.0705     0.1727  81.485
#> minority     -2.6731     0.1985 -13.467
#> female       -1.2949     0.1578  -8.205
#> ses           1.9596     0.1202  16.299
#> meanses       3.1440     0.3574   8.797
#> 
#> Correlation of Fixed Effects:
#>          (Intr) minrty female ses   
#> minority -0.326                     
#> female   -0.482  0.019              
#> ses      -0.204  0.140  0.038       
#> meanses  -0.094  0.127  0.023 -0.231
#> 
#> $imp3
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#>    Data: d
#> 
#> REML criterion at convergence: 46302.4
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -3.2651 -0.7164  0.0325  0.7615  2.9216 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev. Corr 
#>  schid    (Intercept)  2.3422  1.5304        
#>           ses          0.4413  0.6643   -0.46
#>  Residual             35.5652  5.9637        
#> Number of obs: 7185, groups:  schid, 160
#> 
#> Fixed effects:
#>             Estimate Std. Error t value
#> (Intercept)  14.0405     0.1738  80.763
#> minority     -2.7284     0.1990 -13.709
#> female       -1.2155     0.1578  -7.702
#> ses           1.9583     0.1198  16.345
#> meanses       3.1347     0.3595   8.719
#> 
#> Correlation of Fixed Effects:
#>          (Intr) minrty female ses   
#> minority -0.325                     
#> female   -0.481  0.022              
#> ses      -0.209  0.143  0.044       
#> meanses  -0.092  0.126  0.021 -0.226
#> 
#> $imp4
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#>    Data: d
#> 
#> REML criterion at convergence: 46302
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -3.2610 -0.7229  0.0305  0.7612  2.9166 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev. Corr 
#>  schid    (Intercept)  2.3036  1.5178        
#>           ses          0.3951  0.6286   -0.62
#>  Residual             35.6111  5.9675        
#> Number of obs: 7185, groups:  schid, 160
#> 
#> Fixed effects:
#>             Estimate Std. Error t value
#> (Intercept)  14.0302     0.1728  81.179
#> minority     -2.6986     0.1985 -13.592
#> female       -1.2147     0.1573  -7.721
#> ses           1.9973     0.1190  16.784
#> meanses       3.0811     0.3544   8.693
#> 
#> Correlation of Fixed Effects:
#>          (Intr) minrty female ses   
#> minority -0.326                     
#> female   -0.481  0.021              
#> ses      -0.246  0.140  0.040       
#> meanses  -0.104  0.126  0.023 -0.235
#> 
#> $imp5
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: mathach ~ minority + female + ses + meanses + (1 + ses | schid)
#>    Data: d
#> 
#> REML criterion at convergence: 46324.3
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -3.2703 -0.7181  0.0316  0.7649  2.9098 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev. Corr 
#>  schid    (Intercept)  2.3200  1.5231        
#>           ses          0.4484  0.6696   -0.46
#>  Residual             35.6782  5.9731        
#> Number of obs: 7185, groups:  schid, 160
#> 
#> Fixed effects:
#>             Estimate Std. Error t value
#> (Intercept)  14.0262     0.1734  80.890
#> minority     -2.7136     0.1982 -13.689
#> female       -1.1700     0.1577  -7.417
#> ses           1.9339     0.1204  16.060
#> meanses       3.1775     0.3594   8.842
#> 
#> Correlation of Fixed Effects:
#>          (Intr) minrty female ses   
#> minority -0.329                     
#> female   -0.480  0.026              
#> ses      -0.200  0.141  0.036       
#> meanses  -0.095  0.126  0.026 -0.228
```


```r
summary(modList)
#> [1] "Linear mixed model fit by REML"
#> Model family: 
#> lmer(formula = mathach ~ minority + female + ses + meanses + 
#>     (1 + ses | schid), data = d)
#> 
#> Fixed Effects:
#>             estimate std.error statistic         df
#> (Intercept)   14.029     0.174    80.566  99310.593
#> female        -1.213     0.160    -7.574  16493.051
#> meanses        3.142     0.358     8.769 259740.570
#> minority      -2.680     0.202   -13.289  18540.839
#> ses            1.967     0.120    16.372 166028.049
#> 
#> Random Effects:
#> 
#> Error Term Standard Deviations by Level:
#> 
#> schid
#> (Intercept)         ses 
#>       1.518       0.647 
#> 
#> 
#> Error Term Correlations:
#> 
#> schid
#>             (Intercept) ses   
#> (Intercept)  1.000      -0.525
#> ses         -0.525       1.000
#> 
#> 
#> Residual Error = 5.970 
#> 
#> ---Groups
#> number of obs: 7185, groups: schid, 160
#> 
#> Model Fit Stats
#> AIC = 46331.1
#> Residual standard deviation = 5.970
```


```r
fastdisp(modList)
#> lmer(formula = mathach ~ minority + female + ses + meanses + 
#>     (1 + ses | schid), data = d)
#>             estimate std.error
#> (Intercept)    14.03      0.17
#> female         -1.21      0.16
#> meanses         3.14      0.36
#> minority       -2.68      0.20
#> ses             1.97      0.12
#> 
#> Error terms:
#>  Groups   Name        Std.Dev. Corr  
#>  schid    (Intercept) 1.52           
#>           ses         0.65     -0.61 
#>  Residual             5.97           
#> ---
#> number of obs: 7185, groups: schid, 160
#> AIC = 46331.1---
```

The standard errors reported for the model list include a correction, Rubin's
correction (see documentation), which adjusts for the within and between imputation
set variance as well.

## Specific Model Information Summaries


```r
modelRandEffStats(modList)
#>                        term    group   estimate   std.error
#> 1 cor_(Intercept).ses.schid    schid -0.5247666 0.084101895
#> 2      sd_(Intercept).schid    schid  1.5183804 0.008713530
#> 3   sd_Observation.Residual Residual  5.9703034 0.006244066
#> 4              sd_ses.schid    schid  0.6468874 0.028062351
modelFixedEff(modList)
#>          term  estimate std.error  statistic        df
#> 1 (Intercept) 14.028792 0.1741275  80.566201  99310.59
#> 2      female -1.213086 0.1601572  -7.574345  16493.05
#> 3     meanses  3.141636 0.3582833   8.768580 259740.57
#> 4    minority -2.680352 0.2017037 -13.288566  18540.84
#> 5         ses  1.966725 0.1201239  16.372467 166028.05
VarCorr(modList)
#> $stddev
#> $stddev$schid
#> (Intercept)         ses 
#>   1.5183804   0.6468874 
#> 
#> 
#> $correlation
#> $correlation$schid
#>             (Intercept)        ses
#> (Intercept)   1.0000000 -0.5247666
#> ses          -0.5247666  1.0000000
```

### Diagnostics of List Components


```r
modelInfo(mod)
#>   n.obs n.lvls      AIC   sigma
#> 1  6160      1 39764.15 5.98842
```


Let's apply this to our model list.


```r
lapply(modList, modelInfo)
#> $imp1
#>   n.obs n.lvls      AIC    sigma
#> 1  7185      1 46346.34 5.979699
#> 
#> $imp2
#>   n.obs n.lvls      AIC    sigma
#> 1  7185      1 46326.72 5.967532
#> 
#> $imp3
#>   n.obs n.lvls      AIC    sigma
#> 1  7185      1 46320.43 5.963655
#> 
#> $imp4
#>   n.obs n.lvls      AIC    sigma
#> 1  7185      1 46319.96 5.967506
#> 
#> $imp5
#>   n.obs n.lvls      AIC    sigma
#> 1  7185      1 46342.27 5.973125
```

### Model List Generics


```r
summary(modList)
#> [1] "Linear mixed model fit by REML"
#> Model family: 
#> lmer(formula = mathach ~ minority + female + ses + meanses + 
#>     (1 + ses | schid), data = d)
#> 
#> Fixed Effects:
#>             estimate std.error statistic         df
#> (Intercept)   14.029     0.174    80.566  99310.593
#> female        -1.213     0.160    -7.574  16493.051
#> meanses        3.142     0.358     8.769 259740.570
#> minority      -2.680     0.202   -13.289  18540.839
#> ses            1.967     0.120    16.372 166028.049
#> 
#> Random Effects:
#> 
#> Error Term Standard Deviations by Level:
#> 
#> schid
#> (Intercept)         ses 
#>       1.518       0.647 
#> 
#> 
#> Error Term Correlations:
#> 
#> schid
#>             (Intercept) ses   
#> (Intercept)  1.000      -0.525
#> ses         -0.525       1.000
#> 
#> 
#> Residual Error = 5.970 
#> 
#> ---Groups
#> number of obs: 7185, groups: schid, 160
#> 
#> Model Fit Stats
#> AIC = 46331.1
#> Residual standard deviation = 5.970
```


```r
modelFixedEff(modList)
#>          term  estimate std.error  statistic        df
#> 1 (Intercept) 14.028792 0.1741275  80.566201  99310.59
#> 2      female -1.213086 0.1601572  -7.574345  16493.05
#> 3     meanses  3.141636 0.3582833   8.768580 259740.57
#> 4    minority -2.680352 0.2017037 -13.288566  18540.84
#> 5         ses  1.966725 0.1201239  16.372467 166028.05
```


```r
ranef(modList)
#> $schid
#>       (Intercept)           ses
#> 1224 -0.157795533  0.0451127840
#> 1288 -0.044476754  0.0191957958
#> 1296 -0.126472259  0.0218757135
#> 1308  0.064357632 -0.0167977336
#> 1317  0.088861755 -0.0350837887
#> 1358 -0.301385760  0.1053888143
#> 1374 -0.350736225  0.1064976917
#> 1433  0.307310844 -0.0444663946
#> 1436  0.284513686 -0.0602282100
#> 1461 -0.045882842  0.0719067703
#> 1462  0.348424677 -0.1562366964
#> 1477  0.042686687 -0.0406549686
#> 1499 -0.293156885  0.0838236409
#> 1637 -0.097080749  0.0324268391
#> 1906  0.048446937 -0.0150064112
#> 1909 -0.052969237  0.0205894104
#> 1942  0.209581012 -0.0525053879
#> 1946 -0.042287233  0.0350616964
#> 2030 -0.429112816  0.0588461805
#> 2208 -0.024593477  0.0228554436
#> 2277  0.309800057 -0.1834173408
#> 2305  0.550610497 -0.2049548526
#> 2336  0.142313348 -0.0290535691
#> 2458  0.245993091 -0.0255602587
#> 2467 -0.222494935  0.0640753511
#> 2526  0.449997476 -0.1312121315
#> 2626  0.027751982  0.0238061610
#> 2629  0.335613322 -0.0942540137
#> 2639  0.094386542 -0.0820201077
#> 2651 -0.393517983  0.1350175898
#> 2655  0.640384122 -0.1435806679
#> 2658 -0.243275105  0.0607205634
#> 2755  0.135787228 -0.0631922841
#> 2768 -0.268666958  0.0917130815
#> 2771  0.033436716  0.0272030521
#> 2818 -0.018785461  0.0214043728
#> 2917  0.152738008 -0.0762445189
#> 2990  0.448844959 -0.0935887501
#> 2995 -0.235287167  0.0148768819
#> 3013 -0.106680710  0.0516779815
#> 3020  0.090727137 -0.0308716386
#> 3039  0.243996619 -0.0435977108
#> 3088 -0.042231336 -0.0122411932
#> 3152 -0.034103349  0.0356155581
#> 3332 -0.259777846  0.0305681683
#> 3351 -0.461248418  0.0996270996
#> 3377  0.142496875 -0.1211102758
#> 3427  0.841386693 -0.2339682964
#> 3498  0.024887322 -0.0537205006
#> 3499 -0.119817169  0.0080680143
#> 3533 -0.149220939  0.0010719643
#> 3610  0.297746069 -0.0014053243
#> 3657 -0.069261452  0.0633533767
#> 3688 -0.061555723  0.0315302117
#> 3705 -0.427141188  0.0523408834
#> 3716  0.061285137  0.0757199239
#> 3838  0.485386271 -0.1598435378
#> 3881 -0.309537022  0.0860578519
#> 3967 -0.056525049  0.0445060296
#> 3992  0.075297122 -0.0637600889
#> 3999 -0.055817277  0.0457642823
#> 4042 -0.197812746  0.0313570583
#> 4173 -0.082777595  0.0432272733
#> 4223  0.266360906 -0.0698408106
#> 4253 -0.002838943 -0.0732012994
#> 4292  0.495110532 -0.1764400335
#> 4325  0.021047068  0.0103006817
#> 4350 -0.262817422  0.1005502052
#> 4383 -0.234756733  0.0855789496
#> 4410 -0.063023118  0.0284242048
#> 4420  0.205737288 -0.0273245989
#> 4458 -0.043787877 -0.0105867355
#> 4511  0.216198981 -0.0590666506
#> 4523 -0.253392354  0.0623924215
#> 4530  0.061007622 -0.0141412262
#> 4642  0.120939515 -0.0012115746
#> 4868 -0.225562808  0.0092349324
#> 4931 -0.151489897 -0.0105474646
#> 5192 -0.244884720  0.0662313861
#> 5404 -0.267282666  0.0289963481
#> 5619 -0.088591305  0.1050668069
#> 5640  0.066352031  0.0263435429
#> 5650  0.496007374 -0.1520751279
#> 5667 -0.291090712  0.0849233773
#> 5720  0.091591369 -0.0101163734
#> 5761  0.134959735  0.0032009015
#> 5762 -0.090505308  0.0088358929
#> 5783 -0.093105251  0.0419784658
#> 5815 -0.180032189  0.0567256485
#> 5819 -0.324949316  0.0664861258
#> 5838 -0.038168235  0.0005292275
#> 5937  0.040928181 -0.0176469977
#> 6074  0.361576085 -0.1098990853
#> 6089  0.230329688 -0.0455594013
#> 6144 -0.272422991  0.0809874046
#> 6170  0.279563058 -0.0545497420
#> 6291  0.181117957 -0.0356960554
#> 6366  0.193708113 -0.0594649551
#> 6397  0.183418370 -0.0437084542
#> 6415 -0.082399227  0.0577125726
#> 6443 -0.098586726 -0.0413265591
#> 6464 -0.006930839 -0.0110530398
#> 6469  0.342855296 -0.0923368634
#> 6484  0.099185197 -0.0332806845
#> 6578  0.317864661 -0.0765973348
#> 6600 -0.226249834  0.1266724638
#> 6808 -0.331443100  0.0659644663
#> 6816  0.197569880 -0.0620211170
#> 6897  0.032147952  0.0304756664
#> 6990 -0.298601140  0.0257587587
#> 7011  0.061065847  0.0284790004
#> 7101 -0.108095935  0.0111424320
#> 7172 -0.200642122  0.0236336161
#> 7232 -0.031354643  0.0561977605
#> 7276 -0.071317368  0.0498968187
#> 7332  0.036955530  0.0115037701
#> 7341 -0.284857609  0.0196994369
#> 7342  0.071738535 -0.0234087825
#> 7345 -0.246456373  0.0990572950
#> 7364  0.281626879 -0.0887844808
#> 7635  0.067695672 -0.0045773702
#> 7688  0.594207877 -0.1591233000
#> 7697  0.094743826 -0.0012484228
#> 7734  0.033326916  0.0503135537
#> 7890 -0.289921123  0.0298758440
#> 7919 -0.149007142  0.0495897913
#> 8009 -0.244371368  0.0271887171
#> 8150  0.064657992 -0.0398760061
#> 8165  0.175619037 -0.0474879689
#> 8175  0.106248119 -0.0365013872
#> 8188 -0.114131805  0.0573622366
#> 8193  0.542176501 -0.1395995719
#> 8202 -0.224686594  0.0855379047
#> 8357  0.189677518 -0.0218034980
#> 8367 -0.753895035  0.1525305352
#> 8477  0.074297200  0.0168614134
#> 8531 -0.205339027  0.0413324032
#> 8627 -0.378034984  0.0380125197
#> 8628  0.607613395 -0.1688034840
#> 8707 -0.085939080  0.0478432971
#> 8775 -0.201067311  0.0092501597
#> 8800 -0.001740915  0.0111088913
#> 8854 -0.559785941  0.1509853643
#> 8857  0.264207656 -0.0929013046
#> 8874  0.185982681 -0.0115522511
#> 8946 -0.167392474  0.0227325069
#> 8983 -0.141209027  0.0250288618
#> 9021 -0.240450945  0.0425264700
#> 9104 -0.041255449  0.0031660145
#> 9158 -0.281158323  0.1121016974
#> 9198  0.321737680 -0.0485854075
#> 9225  0.003967024  0.0297600149
#> 9292  0.236024371 -0.0736002233
#> 9340 -0.017193371  0.0168080235
#> 9347 -0.055089446  0.0615863493
#> 9359 -0.048633702 -0.0193351608
#> 9397 -0.475984110  0.1004098564
#> 9508  0.106191420 -0.0031993549
#> 9550 -0.265395980  0.0857421977
#> 9586 -0.141583246  0.0331380964
```


## Cautions and Notes

Often it is desirable to include aggregate values in the level two or level three
part of the model such as level 1 SES and level 2 mean SES for the group. In
cases where there is missingness in either the level 1 SES values, or in the
level 2 mean SES values, caution and careful thought need to be given to how to
proceed with the imputation routine.