File: dat.bornmann2007.Rd

package info (click to toggle)
r-cran-metadat 1.2-0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,108 kB
  • sloc: sh: 13; makefile: 2
file content (71 lines) | stat: -rw-r--r-- 3,230 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\name{dat.bornmann2007}
\docType{data}
\alias{dat.bornmann2007}
\title{Studies on Gender Differences in Grant and Fellowship Awards}
\description{Results from 21 studies on gender differences in grant and fellowship awards.}
\usage{
dat.bornmann2007
}
\format{The data frame contains the following columns:
\tabular{lll}{
\bold{study}      \tab \code{character} \tab study reference \cr
\bold{obs}        \tab \code{numeric}   \tab observation within study \cr
\bold{doctype}    \tab \code{character} \tab document type \cr
\bold{gender}     \tab \code{character} \tab gender of the study authors \cr
\bold{year}       \tab \code{numeric}   \tab (average) cohort year \cr
\bold{org}        \tab \code{character} \tab funding organization / program \cr
\bold{country}    \tab \code{character} \tab country of the funding organization / program \cr
\bold{type}       \tab \code{character} \tab fellowship or grant application \cr
\bold{discipline} \tab \code{character} \tab discipline / field \cr
\bold{waward}     \tab \code{numeric}   \tab number of women who received a grant/fellowship award \cr
\bold{wtotal}     \tab \code{numeric}   \tab number of women who applied for an award \cr
\bold{maward}     \tab \code{numeric}   \tab number of men who received a grant/fellowship award \cr
\bold{mtotal}     \tab \code{numeric}   \tab number of men who applied for an award
}
}
\details{
   The studies in this dataset examine whether the chances of receiving a grant or fellowship award differs for men and women. Note that many studies provide multiple comparisons (e.g., for different years / cohorts / disciplines). A multilevel meta-analysis model can be used to account for the multilevel structure in these data.
}
\source{
   Bornmann, L., Mutz, R., & Daniel, H. (2007). Gender differences in grant peer review: A meta-analysis. \emph{Journal of Informetrics}, \bold{1}(3), 226--238. \verb{https://doi.org/10.1016/j.joi.2007.03.001}
}
\references{
   Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O'Mara, A. (2009). Gender effects in the peer reviews of grant proposals: A comprehensive meta-analysis comparing traditional and multilevel approaches. \emph{Review of Educational Research}, \bold{79}(3), 1290--1326. \verb{https://doi.org/10.3102/0034654309334143}
}
\author{
   Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}
}
\examples{
### copy data into 'dat' and examine data
dat <- dat.bornmann2007
head(dat, 16)

\dontrun{

### load metafor package
library(metafor)

### calculate log odds ratios and corresponding sampling variances
dat <- escalc(measure="OR", ai=waward, n1i=wtotal, ci=maward, n2i=mtotal, data=dat)

### fit multilevel meta-analysis model
res <- rma.mv(yi, vi, random = ~ 1 | study/obs, data=dat)
res

### estimated average odds ratio (with 95\% CI/PI)
predict(res, transf=exp, digits=2)

### test for a difference between fellowship and grant applications
res <- rma.mv(yi, vi, mods = ~ type, random = ~ 1 | study/obs, data=dat)
res
predict(res, newmods=0:1, transf=exp, digits=2)

}
}
\keyword{datasets}
\concept{sociology}
\concept{odds ratios}
\concept{multilevel models}
\section{Concepts}{
   sociology, odds ratios, multilevel models
}