File: dat.collins1985a.Rd

package info (click to toggle)
r-cran-metadat 1.2-0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,108 kB
  • sloc: sh: 13; makefile: 2
file content (86 lines) | stat: -rw-r--r-- 4,278 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
\name{dat.collins1985a}
\docType{data}
\alias{dat.collins1985a}
\title{Studies on the Treatment of Upper Gastrointestinal Bleeding by a Histamine H2 Antagonist}
\description{Results from studies examining the effectiveness of histamine H2 antagonists (cimetidine or ranitidine) in treating patients with acute upper gastrointestinal hemorrhage.}
\usage{
dat.collins1985a
}
\format{The data frame contains the following columns:
\tabular{lll}{
\bold{id}    \tab \code{numeric}   \tab study number \cr
\bold{trial} \tab \code{character} \tab first author of trial \cr
\bold{year}  \tab \code{numeric}   \tab year of publication \cr
\bold{ref}   \tab \code{numeric}   \tab reference number \cr
\bold{trt}   \tab \code{character} \tab C = cimetidine, R = ranitidine \cr
\bold{ctrl}  \tab \code{character} \tab P = placebo, AA = antacids, UT = usual treatment \cr
\bold{nti}   \tab \code{numeric}   \tab number of patients in treatment group \cr
\bold{b.xti} \tab \code{numeric}   \tab number of patients in treatment group with persistent or recurrent bleedings \cr
\bold{o.xti} \tab \code{numeric}   \tab number of patients in treatment group in need of operation \cr
\bold{d.xti} \tab \code{numeric}   \tab number of patients in treatment group that died \cr
\bold{nci}   \tab \code{numeric}   \tab number of patients in control group \cr
\bold{b.xci} \tab \code{numeric}   \tab number of patients in control group with persistent or recurrent bleedings \cr
\bold{o.xci} \tab \code{numeric}   \tab number of patients in control group in need of operation \cr
\bold{d.xci} \tab \code{numeric}   \tab number of patients in control group that died
}
}
\details{
   The data were obtained from Tables 1 and 2 in Collins and Langman (1985). The authors used Peto's (one-step) method for meta-analyzing the 27 trials. This approach is implemented in the \code{\link[metafor]{rma.peto}} function. Using the same dataset, van Houwelingen, Zwinderman, and Stijnen (1993) describe some alternative approaches for analyzing these data, including fixed- and random-effects conditional logistic models. Those are implemented in the \code{\link[metafor]{rma.glmm}} function.
}
\source{
   Collins, R., & Langman, M. (1985). Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. \emph{New England Journal of Medicine}, \bold{313}(11), 660--666. \verb{https://doi.org/10.1056/NEJM198509123131104}
}
\references{
   van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. \emph{Statistics in Medicine}, \bold{12}(24), 2273--2284. \verb{https://doi.org/10.1002/sim.4780122405}
}
\author{
   Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}
}
\examples{
### copy data into 'dat' and examine data
dat <- dat.collins1985a
dat

\dontrun{

### load metafor package
library(metafor)

### meta-analysis of log ORs using Peto's method (outcome: persistent or recurrent bleedings)
res <- rma.peto(ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat)
print(res, digits=2)

### meta-analysis of log ORs using a conditional logistic regression model (FE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
                model="CM.EL", method="FE")
summary(res)
predict(res, transf=exp, digits=2)

### plot the likelihoods of the odds ratios
llplot(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
       lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE)

### meta-analysis of log odds ratios using a conditional logistic regression model (RE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
                model="CM.EL", method="ML")
summary(res)
predict(res, transf=exp, digits=2)

### meta-analysis of log ORs using Peto's method (outcome: need for surgery)
res <- rma.peto(ai=o.xti, n1i=nti, ci=o.xci, n2i=nci, data=dat)
print(res, digits=2)

### meta-analysis of log ORs using Peto's method (outcome: death)
res <- rma.peto(ai=d.xti, n1i=nti, ci=d.xci, n2i=nci, data=dat)
print(res, digits=2)

}
}
\keyword{datasets}
\concept{medicine}
\concept{odds ratios}
\concept{Peto's method}
\concept{generalized linear models}
\section{Concepts}{
   medicine, odds ratios, Peto's method, generalized linear models
}