1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
\name{dat.lim2014}
\docType{data}
\alias{dat.lim2014}
\title{Studies on the Association Between Maternal Size, Offspring Size, and Number of Offsprings}
\description{Results from studies examining the association between maternal size, offspring size, and number of offsprings.}
\usage{
dat.lim2014
}
\format{The object is a list containing data frames \code{m_o_size}, \code{m_o_fecundity}, \code{o_o_unadj}, and \code{o_o_adj} that contain the following columns and the corresponding phylogenetic trees called \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree}:
\tabular{lll}{
\bold{article} \tab \code{numeric} \tab article id \cr
\bold{author} \tab \code{character} \tab study author(s) \cr
\bold{year} \tab \code{numeric} \tab publication year \cr
\bold{species} \tab \code{character} \tab species \cr
\bold{amniotes} \tab \code{character} \tab whether the species was amniotic \cr
\bold{environment} \tab \code{character} \tab whether the species were wild or captive \cr
\bold{reprounit} \tab \code{character} \tab whether the data were based on lifetime reproductive output or a single reproductive event (only in \code{m_o_size} and \code{m_o_fecundity}) \cr
\bold{ri} \tab \code{numeric} \tab correlation coefficient \cr
\bold{ni} \tab \code{numeric} \tab sample size
}
}
\details{
The object \code{dat.lim2014} includes 4 datasets:
\tabular{ll}{
\code{m_o_size} \tab on the correlation between maternal size and offspring size \cr
\code{m_o_fecundity} \tab on the correlation between maternal size and number of offsprings \cr
\code{o_o_unadj} \tab on the correlation between offspring size and number of offsprings \cr
\code{o_o_adj} \tab on the correlation between offspring size and number of offsprings adjusted for maternal size
}
Objects \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree} are the corresponding phylogenetic trees for the species included in each of these datasets.
}
\source{
Lim, J. N., Senior, A. M., & Nakagawa, S. (2014). Heterogeneity in individual quality and reproductive trade-offs within species. \emph{Evolution}, \bold{68}(8), 2306--2318. \verb{https://doi.org/10.1111/evo.12446}
}
\references{
Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. \emph{Methods in Ecology and Evolution}. \verb{https://doi.org/10.1111/2041-210X.13760}
Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. \emph{Journal of Evolutionary Biology}, \bold{23}(3), 494--508. \verb{https://doi.org/10.1111/j.1420-9101.2009.01915.x}
Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5}
}
\author{
Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}
}
\examples{
### copy data into 'dat' and examine data
dat <- dat.lim2014$o_o_unadj
dat[1:14, -c(2:3)]
\dontrun{
### load metafor package
library(metafor)
### load ape package
library(ape, warn.conflicts=FALSE)
### calculate r-to-z transformed correlations and corresponding sampling variances
dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat)
### copy tree to 'tree'
tree <- dat.lim2014$o_o_unadj_tree
### compute branch lengths
tree <- compute.brlen(tree)
### compute phylogenetic correlation matrix
A <- vcv(tree, corr=TRUE)
### make copy of the species variable
dat$species.phy <- dat$species
### create effect size id variable
dat$esid <- 1:nrow(dat)
### fit multilevel phylogenetic meta-analytic model
res <- rma.mv(yi, vi,
random = list(~ 1 | article, ~ 1 | esid, ~ 1 | species, ~ 1 | species.phy),
R=list(species.phy=A), data=dat)
res
}
}
\keyword{datasets}
\concept{ecology}
\concept{evolution}
\concept{correlation coefficients}
\concept{multilevel models}
\concept{phylogeny}
\section{Concepts}{
ecology, evolution, correlation coefficients, multilevel models, phylogeny
}
|