1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
\name{dat.lopez2019}
\docType{data}
\alias{dat.lopez2019}
\title{Studies on the Effectiveness of CBT for Depression}
\description{Results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for depression in adults.}
\usage{
dat.lopez2019
}
\format{The data frame contains the following columns:
\tabular{lll}{
\bold{study} \tab \code{character} \tab (first) author and year of study \cr
\bold{treatment} \tab \code{character} \tab treatment provided (see \sQuote{Details}) \cr
\bold{scale} \tab \code{character} \tab scale used to measure depression symptoms \cr
\bold{n} \tab \code{numeric} \tab group size \cr
\bold{diff} \tab \code{numeric} \tab standardized mean change \cr
\bold{se} \tab \code{numeric} \tab corresponding standard error \cr
\bold{group} \tab \code{numeric} \tab type of therapy (0 = individual, 1 = group therapy) \cr
\bold{tailored} \tab \code{numeric} \tab whether the intervention was tailored to each patient (0 = no, 1 = yes) \cr
\bold{sessions} \tab \code{numeric} \tab number of sessions \cr
\bold{length} \tab \code{numeric} \tab average session length (in minutes) \cr
\bold{intensity} \tab \code{numeric} \tab product of sessions and length \cr
\bold{multi} \tab \code{numeric} \tab intervention included multimedia elements (0 = no, 1 = yes) \cr
\bold{cog} \tab \code{numeric} \tab intervention included cognitive techniques (0 = no, 1 = yes) \cr
\bold{ba} \tab \code{numeric} \tab intervention included behavioral activation (0 = no, 1 = yes) \cr
\bold{psed} \tab \code{numeric} \tab intervention included psychoeducation (0 = no, 1 = yes) \cr
\bold{home} \tab \code{numeric} \tab intervention included homework (0 = no, 1 = yes) \cr
\bold{prob} \tab \code{numeric} \tab intervention included problem solving (0 = no, 1 = yes) \cr
\bold{soc} \tab \code{numeric} \tab intervention included social skills training (0 = no, 1 = yes) \cr
\bold{relax} \tab \code{numeric} \tab intervention included relaxation (0 = no, 1 = yes) \cr
\bold{goal} \tab \code{numeric} \tab intervention included goal setting (0 = no, 1 = yes) \cr
\bold{final} \tab \code{numeric} \tab intervention included a final session (0 = no, 1 = yes) \cr
\bold{mind} \tab \code{numeric} \tab intervention included mindfulness (0 = no, 1 = yes) \cr
\bold{act} \tab \code{numeric} \tab intervention included acceptance and commitment therapy (0 = no, 1 = yes)
}
}
\details{
The dataset includes the results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for treating depression in adults. Studies included two or more of the following treatments/conditions:
\enumerate{
\item treatment as usual (TAU),
\item no treatment,
\item wait list,
\item psychological or attention placebo,
\item face-to-face CBT,
\item multimedia CBT,
\item hybrid CBT (i.e., multimedia CBT with one or more face-to-face sessions).
}
Multimedia CBT was defined as CBT delivered via self-help books, audio/video recordings, telephone, computer programs, apps, e-mail, or text messages.
Variable \code{diff} is the standardized mean change within each group, with negative values indicating a decrease in depression symptoms.
}
\source{
Personal communication.
}
\references{
López-López, J. A., Davies, S. R., Caldwell, D. M., Churchill, R., Peters, T. J., Tallon, D., Dawson, S., Wu, Q., Li, J., Taylor, A., Lewis, G., Kessler, D. S., Wiles, N., & Welton, N. J. (2019). The process and delivery of CBT for depression in adults: A systematic review and network meta-analysis. \emph{Psychological Medicine}, \bold{49}(12), 1937--1947. \verb{https://doi.org/10.1017/S003329171900120X}
}
\author{
Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}
}
\examples{
### copy data into 'dat' and examine data
dat <- dat.lopez2019
dat[1:10,1:6]
\dontrun{
### load metafor package
library(metafor)
### create network graph ('igraph' package must be installed)
library(igraph, warn.conflicts=FALSE)
pairs <- data.frame(do.call(rbind,
sapply(split(dat$treatment, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE)
pairs$X1 <- factor(pairs$X1, levels=sort(unique(dat$treatment)))
pairs$X2 <- factor(pairs$X2, levels=sort(unique(dat$treatment)))
tab <- table(pairs[,1], pairs[,2])
tab # adjacency matrix
g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE)
plot(g, edge.curved=FALSE, edge.width=E(g)$weight/2,
layout=layout_in_circle(g, order=c("Wait list", "No treatment", "TAU", "Multimedia CBT",
"Hybrid CBT", "F2F CBT", "Placebo")),
vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2)
### restructure data into wide format
dat <- to.wide(dat, study="study", grp="treatment", ref="TAU",
grpvars=c("diff","se","n"), postfix=c("1","2"))
### compute contrasts between treatment pairs and corresponding sampling variances
dat$yi <- with(dat, diff1 - diff2)
dat$vi <- with(dat, se1^2 + se2^2)
### calculate the variance-covariance matrix for multitreatment studies
calc.v <- function(x) {
v <- matrix(x$se2[1]^2, nrow=nrow(x), ncol=nrow(x))
diag(v) <- x$vi
v
}
V <- bldiag(lapply(split(dat, dat$study), calc.v))
### add contrast matrix to the dataset
dat <- contrmat(dat, grp1="treatment1", grp2="treatment2")
### network meta-analysis using a contrast-based random-effects model
### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons
### the treatment left out (TAU) becomes the reference level for the treatment comparisons
res <- rma.mv(yi, V, data=dat,
mods = ~ No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT - 1,
random = ~ comp | study, rho=1/2)
res
### forest plot of the contrast estimates (treatments versus TAU)
forest(coef(res), diag(vcov(res)), slab=sub(".", " ", names(coef(res)), fixed=TRUE),
xlim=c(-5,5), alim=c(-3,3), psize=1, header="Treatment",
xlab="Difference in Standardized Mean Change (compared to TAU)")
### fit random inconsistency effects model
res <- rma.mv(yi, V, data=dat,
mods = ~ No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT - 1,
random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2)
res
}
}
\keyword{datasets}
\concept{psychiatry}
\concept{standardized mean changes}
\concept{network meta-analysis}
\section{Concepts}{
psychiatry, standardized mean changes, network meta-analysis
}
|