1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/boys.R
\docType{data}
\name{boys}
\alias{boys}
\title{Growth of Dutch boys}
\format{
A data frame with 748 rows on the following 9 variables: \describe{
\item{age}{Decimal age (0-21 years)}
\item{hgt}{Height (cm)}
\item{wgt}{Weight (kg)}
\item{bmi}{Body mass index}
\item{hc}{Head circumference (cm)}
\item{gen}{Genital Tanner stage (G1-G5)}
\item{phb}{Pubic hair (Tanner P1-P6)}
\item{tv}{Testicular volume (ml)}
\item{reg}{Region (north, east, west, south, city)} }
}
\source{
Fredriks, A.M,, van Buuren, S., Burgmeijer, R.J., Meulmeester JF,
Beuker, R.J., Brugman, E., Roede, M.J., Verloove-Vanhorick, S.P., Wit, J.M.
(2000) Continuing positive secular growth change in The Netherlands
1955-1997. \emph{Pediatric Research}, \bold{47}, 316-323.
Fredriks, A.M., van Buuren, S., Wit, J.M., Verloove-Vanhorick, S.P. (2000).
Body index measurements in 1996-7 compared with 1980. \emph{Archives of
Disease in Childhood}, \bold{82}, 107-112.
}
\description{
Height, weight, head circumference and puberty of 748 Dutch boys.
}
\details{
Random sample of 10\% from the cross-sectional data used to construct the
Dutch growth references 1997. Variables \code{gen} and \code{phb} are ordered
factors. \code{reg} is a factor.
}
\examples{
# create two imputed data sets
imp <- mice(boys, m = 1, maxit = 2)
z <- complete(imp, 1)
# create imputations for age <8yrs
plot(z$age, z$gen,
col = mdc(1:2)[1 + is.na(boys$gen)],
xlab = "Age (years)", ylab = "Tanner Stage Genital"
)
# figure to show that the default imputation method does not impute BMI
# consistently
plot(z$bmi, z$wgt / (z$hgt / 100)^2,
col = mdc(1:2)[1 + is.na(boys$bmi)],
xlab = "Imputed BMI", ylab = "Calculated BMI"
)
# also, BMI distributions are somewhat different
oldpar <- par(mfrow = c(1, 2))
MASS::truehist(z$bmi[!is.na(boys$bmi)],
h = 1, xlim = c(10, 30), ymax = 0.25,
col = mdc(1), xlab = "BMI observed"
)
MASS::truehist(z$bmi[is.na(boys$bmi)],
h = 1, xlim = c(10, 30), ymax = 0.25,
col = mdc(2), xlab = "BMI imputed"
)
par(oldpar)
# repair the inconsistency problem by passive imputation
meth <- imp$meth
meth["bmi"] <- "~I(wgt/(hgt/100)^2)"
pred <- imp$predictorMatrix
pred["hgt", "bmi"] <- 0
pred["wgt", "bmi"] <- 0
imp2 <- mice(boys, m = 1, maxit = 2, meth = meth, pred = pred)
z2 <- complete(imp2, 1)
# show that new imputations are consistent
plot(z2$bmi, z2$wgt / (z2$hgt / 100)^2,
col = mdc(1:2)[1 + is.na(boys$bmi)],
ylab = "Calculated BMI"
)
# and compare distributions
oldpar <- par(mfrow = c(1, 2))
MASS::truehist(z2$bmi[!is.na(boys$bmi)],
h = 1, xlim = c(10, 30), ymax = 0.25, col = mdc(1),
xlab = "BMI observed"
)
MASS::truehist(z2$bmi[is.na(boys$bmi)],
h = 1, xlim = c(10, 30), ymax = 0.25, col = mdc(2),
xlab = "BMI imputed"
)
par(oldpar)
}
\keyword{datasets}
|