1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mice.impute.pmm.R
\name{mice.impute.pmm}
\alias{mice.impute.pmm}
\alias{pmm}
\title{Imputation by predictive mean matching}
\usage{
mice.impute.pmm(
y,
ry,
x,
wy = NULL,
donors = 5L,
matchtype = 1L,
exclude = NULL,
quantify = TRUE,
trim = 1L,
ridge = 1e-05,
use.matcher = FALSE,
...
)
}
\arguments{
\item{y}{Vector to be imputed}
\item{ry}{Logical vector of length \code{length(y)} indicating the
the subset \code{y[ry]} of elements in \code{y} to which the imputation
model is fitted. The \code{ry} generally distinguishes the observed
(\code{TRUE}) and missing values (\code{FALSE}) in \code{y}.}
\item{x}{Numeric design matrix with \code{length(y)} rows with predictors for
\code{y}. Matrix \code{x} may have no missing values.}
\item{wy}{Logical vector of length \code{length(y)}. A \code{TRUE} value
indicates locations in \code{y} for which imputations are created.}
\item{donors}{The size of the donor pool among which a draw is made.
The default is \code{donors = 5L}. Setting \code{donors = 1L} always selects
the closest match, but is not recommended. Values between 3L and 10L
provide the best results in most cases (Morris et al, 2015).}
\item{matchtype}{Type of matching distance. The default choice
(\code{matchtype = 1L}) calculates the distance between
the \emph{predicted} value of \code{yobs} and
the \emph{drawn} values of \code{ymis} (called type-1 matching).
Other choices are \code{matchtype = 0L}
(distance between predicted values) and \code{matchtype = 2L}
(distance between drawn values).}
\item{exclude}{Dependent values to exclude from the imputation model
and the collection of donor values}
\item{quantify}{Logical. If \code{TRUE}, factor levels are replaced
by the first canonical variate before fitting the imputation model.
If false, the procedure reverts to the old behaviour and takes the
integer codes (which may lack a sensible interpretation).
Relevant only of \code{y} is a factor.}
\item{trim}{Scalar integer. Minimum number of observations required in a
category in order to be considered as a potential donor value.
Relevant only of \code{y} is a factor.}
\item{ridge}{The ridge penalty used in \code{.norm.draw()} to prevent
problems with multicollinearity. The default is \code{ridge = 1e-05},
which means that 0.01 percent of the diagonal is added to the cross-product.
Larger ridges may result in more biased estimates. For highly noisy data
(e.g. many junk variables), set \code{ridge = 1e-06} or even lower to
reduce bias. For highly collinear data, set \code{ridge = 1e-04} or higher.}
\item{use.matcher}{Logical. Set \code{use.matcher = TRUE} to specify
the C function \code{matcher()}, the now deprecated matching function that
was default in versions
\code{2.22} (June 2014) to \code{3.11.7} (Oct 2020). Since version \code{3.12.0}
\code{mice()} uses the much faster \code{matchindex} C function. Use
the deprecated \code{matcher} function only for exact reproduction.}
\item{\dots}{Other named arguments.}
}
\value{
Vector with imputed data, same type as \code{y}, and of length
\code{sum(wy)}
}
\description{
Imputation by predictive mean matching
}
\details{
Imputation of \code{y} by predictive mean matching, based on
van Buuren (2012, p. 73). The procedure is as follows:
\enumerate{
\item{Calculate the cross-product matrix \eqn{S=X_{obs}'X_{obs}}.}
\item{Calculate \eqn{V = (S+{diag}(S)\kappa)^{-1}}, with some small ridge
parameter \eqn{\kappa}.}
\item{Calculate regression weights \eqn{\hat\beta = VX_{obs}'y_{obs}.}}
\item{Draw \eqn{q} independent \eqn{N(0,1)} variates in vector \eqn{\dot z_1}.}
\item{Calculate \eqn{V^{1/2}} by Cholesky decomposition.}
\item{Calculate \eqn{\dot\beta = \hat\beta + \dot\sigma\dot z_1 V^{1/2}}.}
\item{Calculate \eqn{\dot\eta(i,j)=|X_{{obs},[i]|}\hat\beta-X_{{mis},[j]}\dot\beta}
with \eqn{i=1,\dots,n_1} and \eqn{j=1,\dots,n_0}.}
\item{Construct \eqn{n_0} sets \eqn{Z_j}, each containing \eqn{d}
candidate donors, from \eqn{y_{obs}} such that \eqn{\sum_d\dot\eta(i,j)} is
minimum for all \eqn{j=1,\dots,n_0}. Break ties randomly.}
\item{Draw one donor \eqn{i_j} from \eqn{Z_j} randomly for \eqn{j=1,\dots,n_0}.}
\item{Calculate imputations \eqn{\dot y_j = y_{i_j}} for \eqn{j=1,\dots,n_0}.}
}
The name \emph{predictive mean matching} was proposed by Little (1988).
}
\examples{
# We normally call mice.impute.pmm() from within mice()
# But we may call it directly as follows (not recommended)
set.seed(53177)
xname <- c("age", "hgt", "wgt")
r <- stats::complete.cases(boys[, xname])
x <- boys[r, xname]
y <- boys[r, "tv"]
ry <- !is.na(y)
table(ry)
# percentage of missing data in tv
sum(!ry) / length(ry)
# Impute missing tv data
yimp <- mice.impute.pmm(y, ry, x)
length(yimp)
hist(yimp, xlab = "Imputed missing tv")
# Impute all tv data
yimp <- mice.impute.pmm(y, ry, x, wy = rep(TRUE, length(y)))
length(yimp)
hist(yimp, xlab = "Imputed missing and observed tv")
plot(jitter(y), jitter(yimp),
main = "Predictive mean matching on age, height and weight",
xlab = "Observed tv (n = 224)",
ylab = "Imputed tv (n = 224)"
)
abline(0, 1)
cor(y, yimp, use = "pair")
# Use blots to exclude different values per column
# Create blots object
blots <- make.blots(boys)
# Exclude ml 1 through 5 from tv donor pool
blots$tv$exclude <- c(1:5)
# Exclude 100 random observed heights from tv donor pool
blots$hgt$exclude <- sample(unique(boys$hgt), 100)
imp <- mice(boys, method = "pmm", print = FALSE, blots = blots, seed=123)
blots$hgt$exclude \%in\% unlist(c(imp$imp$hgt)) # MUST be all FALSE
blots$tv$exclude \%in\% unlist(c(imp$imp$tv)) # MUST be all FALSE
# Factor quantification
xname <- c("age", "hgt", "wgt")
br <- boys[c(1:10, 101:110, 501:510, 601:620, 701:710), ]
r <- stats::complete.cases(br[, xname])
x <- br[r, xname]
y <- factor(br[r, "tv"])
ry <- !is.na(y)
table(y)
# impute factor by optimizing canonical correlation y, x
mice.impute.pmm(y, ry, x)
# only categories with at least 2 cases can be donor
mice.impute.pmm(y, ry, x, trim = 2L)
# in addition, eliminate category 20
mice.impute.pmm(y, ry, x, trim = 2L, exclude = 20)
# to get old behavior: as.integer(y))
mice.impute.pmm(y, ry, x, quantify = FALSE)
}
\references{
Little, R.J.A. (1988), Missing data adjustments in large surveys
(with discussion), Journal of Business Economics and Statistics, 6, 287--301.
Morris TP, White IR, Royston P (2015). Tuning multiple imputation by predictive
mean matching and local residual draws. BMC Med Res Methodol. ;14:75.
Van Buuren, S. (2018).
\href{https://stefvanbuuren.name/fimd/sec-pmm.html}{\emph{Flexible Imputation of Missing Data. Second Edition.}}
Chapman & Hall/CRC. Boca Raton, FL.
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). \code{mice}: Multivariate
Imputation by Chained Equations in \code{R}. \emph{Journal of Statistical
Software}, \bold{45}(3), 1-67. \doi{10.18637/jss.v045.i03}
}
\seealso{
Other univariate imputation functions:
\code{\link{mice.impute.cart}()},
\code{\link{mice.impute.lasso.logreg}()},
\code{\link{mice.impute.lasso.norm}()},
\code{\link{mice.impute.lasso.select.logreg}()},
\code{\link{mice.impute.lasso.select.norm}()},
\code{\link{mice.impute.lda}()},
\code{\link{mice.impute.logreg}()},
\code{\link{mice.impute.logreg.boot}()},
\code{\link{mice.impute.mean}()},
\code{\link{mice.impute.midastouch}()},
\code{\link{mice.impute.mnar.logreg}()},
\code{\link{mice.impute.mpmm}()},
\code{\link{mice.impute.norm}()},
\code{\link{mice.impute.norm.boot}()},
\code{\link{mice.impute.norm.nob}()},
\code{\link{mice.impute.norm.predict}()},
\code{\link{mice.impute.polr}()},
\code{\link{mice.impute.polyreg}()},
\code{\link{mice.impute.quadratic}()},
\code{\link{mice.impute.rf}()},
\code{\link{mice.impute.ri}()}
}
\author{
Gerko Vink, Stef van Buuren, Karin Groothuis-Oudshoorn
}
\concept{univariate imputation functions}
\keyword{datagen}
|