1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mice.impute.quadratic.R
\name{mice.impute.quadratic}
\alias{mice.impute.quadratic}
\alias{quadratic}
\title{Imputation of quadratic terms}
\usage{
mice.impute.quadratic(y, ry, x, wy = NULL, quad.outcome = NULL, ...)
}
\arguments{
\item{y}{Vector to be imputed}
\item{ry}{Logical vector of length \code{length(y)} indicating the
the subset \code{y[ry]} of elements in \code{y} to which the imputation
model is fitted. The \code{ry} generally distinguishes the observed
(\code{TRUE}) and missing values (\code{FALSE}) in \code{y}.}
\item{x}{Numeric design matrix with \code{length(y)} rows with predictors for
\code{y}. Matrix \code{x} may have no missing values.}
\item{wy}{Logical vector of length \code{length(y)}. A \code{TRUE} value
indicates locations in \code{y} for which imputations are created.}
\item{quad.outcome}{The name of the outcome in the quadratic analysis as a
character string. For example, if the substantive model of interest is
\code{y ~ x + xx}, then \code{"y"} would be the \code{quad.outcome}}
\item{...}{Other named arguments.}
}
\value{
Vector with imputed data, same type as \code{y}, and of length
\code{sum(wy)}
}
\description{
Imputes incomplete variable that appears as both
main effect and quadratic effect in the complete-data model.
}
\details{
This function implements the "polynomial combination" method.
First, the polynomial
combination \eqn{Z = Y \beta_1 + Y^2 \beta_2} is formed.
\eqn{Z} is imputed by
predictive mean matching, followed by a decomposition of the imputed
data \eqn{Z}
into components \eqn{Y} and \eqn{Y^2}.
See Van Buuren (2012, pp. 139-141) and Vink
et al (2012) for more details. The method ensures that 1) the imputed data
for \eqn{Y} and \eqn{Y^2} are mutually consistent, and 2) that provides unbiased
estimates of the regression weights in a complete-data linear regression that
use both \eqn{Y} and \eqn{Y^2}.
}
\note{
There are two situations to consider. If only the linear term \code{Y}
is present in the data, calculate the quadratic term \code{YY} after
imputation. If both the linear term \code{Y} and the the quadratic term
\code{YY} are variables in the data, then first impute \code{Y} by calling
\code{mice.impute.quadratic()} on \code{Y}, and then impute \code{YY} by
passive imputation as \code{meth["YY"] <- "~I(Y^2)"}. See example section
for details. Generally, we would like \code{YY} to be present in the data if
we need to preserve quadratic relations between \code{YY} and any third
variables in the multivariate incomplete data that we might wish to impute.
}
\examples{
# Create Data
B1 <- .5
B2 <- .5
X <- rnorm(1000)
XX <- X^2
e <- rnorm(1000, 0, 1)
Y <- B1 * X + B2 * XX + e
dat <- data.frame(x = X, xx = XX, y = Y)
# Impose 25 percent MCAR Missingness
dat[0 == rbinom(1000, 1, 1 - .25), 1:2] <- NA
# Prepare data for imputation
ini <- mice(dat, maxit = 0)
meth <- c("quadratic", "~I(x^2)", "")
pred <- ini$pred
pred[, "xx"] <- 0
# Impute data
imp <- mice(dat, meth = meth, pred = pred, quad.outcome = "y")
# Pool results
pool(with(imp, lm(y ~ x + xx)))
# Plot results
stripplot(imp)
plot(dat$x, dat$xx, col = mdc(1), xlab = "x", ylab = "xx")
cmp <- complete(imp)
points(cmp$x[is.na(dat$x)], cmp$xx[is.na(dat$x)], col = mdc(2))
}
\seealso{
\code{\link{mice.impute.pmm}}
Van Buuren, S. (2018).
\href{https://stefvanbuuren.name/fimd/sec-knowledge.html#sec:quadratic}{\emph{Flexible Imputation of Missing Data. Second Edition.}}
Chapman & Hall/CRC. Boca Raton, FL.
Vink, G., van Buuren, S. (2013). Multiple Imputation of Squared Terms.
\emph{Sociological Methods & Research}, 42:598-607.
Other univariate imputation functions:
\code{\link{mice.impute.cart}()},
\code{\link{mice.impute.lasso.logreg}()},
\code{\link{mice.impute.lasso.norm}()},
\code{\link{mice.impute.lasso.select.logreg}()},
\code{\link{mice.impute.lasso.select.norm}()},
\code{\link{mice.impute.lda}()},
\code{\link{mice.impute.logreg}()},
\code{\link{mice.impute.logreg.boot}()},
\code{\link{mice.impute.mean}()},
\code{\link{mice.impute.midastouch}()},
\code{\link{mice.impute.mnar.logreg}()},
\code{\link{mice.impute.mpmm}()},
\code{\link{mice.impute.norm}()},
\code{\link{mice.impute.norm.boot}()},
\code{\link{mice.impute.norm.nob}()},
\code{\link{mice.impute.norm.predict}()},
\code{\link{mice.impute.pmm}()},
\code{\link{mice.impute.polr}()},
\code{\link{mice.impute.polyreg}()},
\code{\link{mice.impute.rf}()},
\code{\link{mice.impute.ri}()}
}
\author{
Mingyang Cai and Gerko Vink
}
\concept{univariate imputation functions}
\keyword{datagen}
|