File: norm.draw.Rd

package info (click to toggle)
r-cran-mice 3.17.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,380 kB
  • sloc: cpp: 121; sh: 25; makefile: 2
file content (42 lines) | stat: -rw-r--r-- 1,417 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mice.impute.norm.R
\name{norm.draw}
\alias{norm.draw}
\alias{.norm.draw}
\title{Draws values of beta and sigma by Bayesian linear regression}
\usage{
norm.draw(y, ry, x, rank.adjust = TRUE, ...)

.norm.draw(y, ry, x, rank.adjust = TRUE, ...)
}
\arguments{
\item{y}{Incomplete data vector of length \code{n}}

\item{ry}{Vector of missing data pattern (\code{FALSE}=missing,
\code{TRUE}=observed)}

\item{x}{Matrix (\code{n} x \code{p}) of complete covariates.}

\item{rank.adjust}{Argument that specifies whether \code{NA}'s in the
coefficients need to be set to zero. Only relevant when \code{ls.meth = "qr"}
AND the predictor matrix is rank-deficient.}

\item{...}{Other named arguments.}
}
\value{
A \code{list} containing components \code{coef} (least squares estimate),
\code{beta} (drawn regression weights) and \code{sigma} (drawn value of the
residual standard deviation).
}
\description{
This function draws random values of beta and sigma under the Bayesian
linear regression model as described in Rubin (1987, p. 167). This function
can be called by user-specified imputation functions.
}
\references{
Rubin, D.B. (1987). \emph{Multiple imputation for nonresponse in surveys}. New York: Wiley.
}
\author{
Gerko Vink, 2018, for this version, based on earlier versions written
by Stef van Buuren, Karin Groothuis-Oudshoorn, 2017
}