File: no-embedded-minpack.patch

package info (click to toggle)
r-cran-minpack.lm 1.2-1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 396 kB
  • sloc: ansic: 487; makefile: 2
file content (2799 lines) | stat: -rw-r--r-- 92,077 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
Description: Link against minpack from Debian package instead of embedded copy
 - remove all src/*.f files
 - add -lminpack to PKG_LIBS in Makevars
Author: Sébastien Villemot <sebastien@debian.org>
Forwarded: not-needed
Last-Update: 2018-01-30
---
This patch header follows DEP-3: http://dep.debian.net/deps/dep3/
--- a/src/chkder.f
+++ /dev/null
@@ -1,140 +0,0 @@
-      subroutine chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,mode,err)
-      integer m,n,ldfjac,mode
-      double precision x(n),fvec(m),fjac(ldfjac,n),xp(n),fvecp(m),
-     *                 err(m)
-c     **********
-c
-c     subroutine chkder
-c
-c     this subroutine checks the gradients of m nonlinear functions
-c     in n variables, evaluated at a point x, for consistency with
-c     the functions themselves. the user must call chkder twice,
-c     first with mode = 1 and then with mode = 2.
-c
-c     mode = 1. on input, x must contain the point of evaluation.
-c               on output, xp is set to a neighboring point.
-c
-c     mode = 2. on input, fvec must contain the functions and the
-c                         rows of fjac must contain the gradients
-c                         of the respective functions each evaluated
-c                         at x, and fvecp must contain the functions
-c                         evaluated at xp.
-c               on output, err contains measures of correctness of
-c                          the respective gradients.
-c
-c     the subroutine does not perform reliably if cancellation or
-c     rounding errors cause a severe loss of significance in the
-c     evaluation of a function. therefore, none of the components
-c     of x should be unusually small (in particular, zero) or any
-c     other value which may cause loss of significance.
-c
-c     the subroutine statement is
-c
-c       subroutine chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,mode,err)
-c
-c     where
-c
-c       m is a positive integer input variable set to the number
-c         of functions.
-c
-c       n is a positive integer input variable set to the number
-c         of variables.
-c
-c       x is an input array of length n.
-c
-c       fvec is an array of length m. on input when mode = 2,
-c         fvec must contain the functions evaluated at x.
-c
-c       fjac is an m by n array. on input when mode = 2,
-c         the rows of fjac must contain the gradients of
-c         the respective functions evaluated at x.
-c
-c       ldfjac is a positive integer input parameter not less than m
-c         which specifies the leading dimension of the array fjac.
-c
-c       xp is an array of length n. on output when mode = 1,
-c         xp is set to a neighboring point of x.
-c
-c       fvecp is an array of length m. on input when mode = 2,
-c         fvecp must contain the functions evaluated at xp.
-c
-c       mode is an integer input variable set to 1 on the first call
-c         and 2 on the second. other values of mode are equivalent
-c         to mode = 1.
-c
-c       err is an array of length m. on output when mode = 2,
-c         err contains measures of correctness of the respective
-c         gradients. if there is no severe loss of significance,
-c         then if err(i) is 1.0 the i-th gradient is correct,
-c         while if err(i) is 0.0 the i-th gradient is incorrect.
-c         for values of err between 0.0 and 1.0, the categorization
-c         is less certain. in general, a value of err(i) greater
-c         than 0.5 indicates that the i-th gradient is probably
-c         correct, while a value of err(i) less than 0.5 indicates
-c         that the i-th gradient is probably incorrect.
-c
-c     subprograms called
-c
-c       minpack supplied ... dpmpar
-c
-c       fortran supplied ... dabs,dlog10,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j
-      double precision eps,epsf,epslog,epsmch,factor,one,temp,zero
-      double precision dpmpar
-      data factor,one,zero /1.0d2,1.0d0,0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-      eps = dsqrt(epsmch)
-c
-      if (mode .eq. 2) go to 20
-c
-c        mode = 1.
-c
-         do 10 j = 1, n
-            temp = eps*dabs(x(j))
-            if (temp .eq. zero) temp = eps
-            xp(j) = x(j) + temp
-   10       continue
-         go to 70
-   20 continue
-c
-c        mode = 2.
-c
-         epsf = factor*epsmch
-         epslog = dlog10(eps)
-         do 30 i = 1, m
-            err(i) = zero
-   30       continue
-         do 50 j = 1, n
-            temp = dabs(x(j))
-            if (temp .eq. zero) temp = one
-            do 40 i = 1, m
-               err(i) = err(i) + temp*fjac(i,j)
-   40          continue
-   50       continue
-         do 60 i = 1, m
-            temp = one
-            if (fvec(i) .ne. zero .and. fvecp(i) .ne. zero
-     *          .and. dabs(fvecp(i)-fvec(i)) .ge. epsf*dabs(fvec(i)))
-     *         temp = eps*dabs((fvecp(i)-fvec(i))/eps-err(i))
-     *                /(dabs(fvec(i)) + dabs(fvecp(i)))
-            err(i) = one
-            if (temp .gt. epsmch .and. temp .lt. eps)
-     *         err(i) = (dlog10(temp) - epslog)/epslog
-            if (temp .ge. eps) err(i) = zero
-   60       continue
-   70 continue
-c
-      return
-c
-c     last card of subroutine chkder.
-c
-      end
--- a/src/dogleg.f
+++ /dev/null
@@ -1,177 +0,0 @@
-      subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
-      integer n,lr
-      double precision delta
-      double precision r(lr),diag(n),qtb(n),x(n),wa1(n),wa2(n)
-c     **********
-c
-c     subroutine dogleg
-c
-c     given an m by n matrix a, an n by n nonsingular diagonal
-c     matrix d, an m-vector b, and a positive number delta, the
-c     problem is to determine the convex combination x of the
-c     gauss-newton and scaled gradient directions that minimizes
-c     (a*x - b) in the least squares sense, subject to the
-c     restriction that the euclidean norm of d*x be at most delta.
-c
-c     this subroutine completes the solution of the problem
-c     if it is provided with the necessary information from the
-c     qr factorization of a. that is, if a = q*r, where q has
-c     orthogonal columns and r is an upper triangular matrix,
-c     then dogleg expects the full upper triangle of r and
-c     the first n components of (q transpose)*b.
-c
-c     the subroutine statement is
-c
-c       subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
-c
-c     where
-c
-c       n is a positive integer input variable set to the order of r.
-c
-c       r is an input array of length lr which must contain the upper
-c         triangular matrix r stored by rows.
-c
-c       lr is a positive integer input variable not less than
-c         (n*(n+1))/2.
-c
-c       diag is an input array of length n which must contain the
-c         diagonal elements of the matrix d.
-c
-c       qtb is an input array of length n which must contain the first
-c         n elements of the vector (q transpose)*b.
-c
-c       delta is a positive input variable which specifies an upper
-c         bound on the euclidean norm of d*x.
-c
-c       x is an output array of length n which contains the desired
-c         convex combination of the gauss-newton direction and the
-c         scaled gradient direction.
-c
-c       wa1 and wa2 are work arrays of length n.
-c
-c     subprograms called
-c
-c       minpack-supplied ... dpmpar,enorm
-c
-c       fortran-supplied ... dabs,dmax1,dmin1,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j,jj,jp1,k,l
-      double precision alpha,bnorm,epsmch,gnorm,one,qnorm,sgnorm,sum,
-     *                 temp,zero
-      double precision dpmpar,enorm
-      data one,zero /1.0d0,0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-c     first, calculate the gauss-newton direction.
-c
-      jj = (n*(n + 1))/2 + 1
-      do 50 k = 1, n
-         j = n - k + 1
-         jp1 = j + 1
-         jj = jj - k
-         l = jj + 1
-         sum = zero
-         if (n .lt. jp1) go to 20
-         do 10 i = jp1, n
-            sum = sum + r(l)*x(i)
-            l = l + 1
-   10       continue
-   20    continue
-         temp = r(jj)
-         if (temp .ne. zero) go to 40
-         l = j
-         do 30 i = 1, j
-            temp = dmax1(temp,dabs(r(l)))
-            l = l + n - i
-   30       continue
-         temp = epsmch*temp
-         if (temp .eq. zero) temp = epsmch
-   40    continue
-         x(j) = (qtb(j) - sum)/temp
-   50    continue
-c
-c     test whether the gauss-newton direction is acceptable.
-c
-      do 60 j = 1, n
-         wa1(j) = zero
-         wa2(j) = diag(j)*x(j)
-   60    continue
-      qnorm = enorm(n,wa2)
-      if (qnorm .le. delta) go to 140
-c
-c     the gauss-newton direction is not acceptable.
-c     next, calculate the scaled gradient direction.
-c
-      l = 1
-      do 80 j = 1, n
-         temp = qtb(j)
-         do 70 i = j, n
-            wa1(i) = wa1(i) + r(l)*temp
-            l = l + 1
-   70       continue
-         wa1(j) = wa1(j)/diag(j)
-   80    continue
-c
-c     calculate the norm of the scaled gradient and test for
-c     the special case in which the scaled gradient is zero.
-c
-      gnorm = enorm(n,wa1)
-      sgnorm = zero
-      alpha = delta/qnorm
-      if (gnorm .eq. zero) go to 120
-c
-c     calculate the point along the scaled gradient
-c     at which the quadratic is minimized.
-c
-      do 90 j = 1, n
-         wa1(j) = (wa1(j)/gnorm)/diag(j)
-   90    continue
-      l = 1
-      do 110 j = 1, n
-         sum = zero
-         do 100 i = j, n
-            sum = sum + r(l)*wa1(i)
-            l = l + 1
-  100       continue
-         wa2(j) = sum
-  110    continue
-      temp = enorm(n,wa2)
-      sgnorm = (gnorm/temp)/temp
-c
-c     test whether the scaled gradient direction is acceptable.
-c
-      alpha = zero
-      if (sgnorm .ge. delta) go to 120
-c
-c     the scaled gradient direction is not acceptable.
-c     finally, calculate the point along the dogleg
-c     at which the quadratic is minimized.
-c
-      bnorm = enorm(n,qtb)
-      temp = (bnorm/gnorm)*(bnorm/qnorm)*(sgnorm/delta)
-      temp = temp - (delta/qnorm)*(sgnorm/delta)**2
-     *       + dsqrt((temp-(delta/qnorm))**2
-     *               +(one-(delta/qnorm)**2)*(one-(sgnorm/delta)**2))
-      alpha = ((delta/qnorm)*(one - (sgnorm/delta)**2))/temp
-  120 continue
-c
-c     form appropriate convex combination of the gauss-newton
-c     direction and the scaled gradient direction.
-c
-      temp = (one - alpha)*dmin1(sgnorm,delta)
-      do 130 j = 1, n
-         x(j) = temp*wa1(j) + alpha*x(j)
-  130    continue
-  140 continue
-      return
-c
-c     last card of subroutine dogleg.
-c
-      end
--- a/src/dpmpar.f
+++ /dev/null
@@ -1,177 +0,0 @@
-      double precision function dpmpar(i)
-      integer i
-c     **********
-c
-c     Function dpmpar
-c
-c     This function provides double precision machine parameters
-c     when the appropriate set of data statements is activated (by
-c     removing the c from column 1) and all other data statements are
-c     rendered inactive. Most of the parameter values were obtained
-c     from the corresponding Bell Laboratories Port Library function.
-c
-c     The function statement is
-c
-c       double precision function dpmpar(i)
-c
-c     where
-c
-c       i is an integer input variable set to 1, 2, or 3 which
-c         selects the desired machine parameter. If the machine has
-c         t base b digits and its smallest and largest exponents are
-c         emin and emax, respectively, then these parameters are
-c
-c         dpmpar(1) = b**(1 - t), the machine precision,
-c
-c         dpmpar(2) = b**(emin - 1), the smallest magnitude,
-c
-c         dpmpar(3) = b**emax*(1 - b**(-t)), the largest magnitude.
-c
-c     Argonne National Laboratory. MINPACK Project. November 1996.
-c     Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More'
-c
-c     **********
-      integer mcheps(4)
-      integer minmag(4)
-      integer maxmag(4)
-      double precision dmach(3)
-      equivalence (dmach(1),mcheps(1))
-      equivalence (dmach(2),minmag(1))
-      equivalence (dmach(3),maxmag(1))
-c
-c     Machine constants for the IBM 360/370 series,
-c     the Amdahl 470/V6, the ICL 2900, the Itel AS/6,
-c     the Xerox Sigma 5/7/9 and the Sel systems 85/86.
-c
-c     data mcheps(1),mcheps(2) / z34100000, z00000000 /
-c     data minmag(1),minmag(2) / z00100000, z00000000 /
-c     data maxmag(1),maxmag(2) / z7fffffff, zffffffff /
-c
-c     Machine constants for the Honeywell 600/6000 series.
-c
-c     data mcheps(1),mcheps(2) / o606400000000, o000000000000 /
-c     data minmag(1),minmag(2) / o402400000000, o000000000000 /
-c     data maxmag(1),maxmag(2) / o376777777777, o777777777777 /
-c
-c     Machine constants for the CDC 6000/7000 series.
-c
-c     data mcheps(1) / 15614000000000000000b /
-c     data mcheps(2) / 15010000000000000000b /
-c
-c     data minmag(1) / 00604000000000000000b /
-c     data minmag(2) / 00000000000000000000b /
-c
-c     data maxmag(1) / 37767777777777777777b /
-c     data maxmag(2) / 37167777777777777777b /
-c
-c     Machine constants for the PDP-10 (KA processor).
-c
-c     data mcheps(1),mcheps(2) / "114400000000, "000000000000 /
-c     data minmag(1),minmag(2) / "033400000000, "000000000000 /
-c     data maxmag(1),maxmag(2) / "377777777777, "344777777777 /
-c
-c     Machine constants for the PDP-10 (KI processor).
-c
-c     data mcheps(1),mcheps(2) / "104400000000, "000000000000 /
-c     data minmag(1),minmag(2) / "000400000000, "000000000000 /
-c     data maxmag(1),maxmag(2) / "377777777777, "377777777777 /
-c
-c     Machine constants for the PDP-11. 
-c
-c     data mcheps(1),mcheps(2) /   9472,      0 /
-c     data mcheps(3),mcheps(4) /      0,      0 /
-c
-c     data minmag(1),minmag(2) /    128,      0 /
-c     data minmag(3),minmag(4) /      0,      0 /
-c
-c     data maxmag(1),maxmag(2) /  32767,     -1 /
-c     data maxmag(3),maxmag(4) /     -1,     -1 /
-c
-c     Machine constants for the Burroughs 6700/7700 systems.
-c
-c     data mcheps(1) / o1451000000000000 /
-c     data mcheps(2) / o0000000000000000 /
-c
-c     data minmag(1) / o1771000000000000 /
-c     data minmag(2) / o7770000000000000 /
-c
-c     data maxmag(1) / o0777777777777777 /
-c     data maxmag(2) / o7777777777777777 /
-c
-c     Machine constants for the Burroughs 5700 system.
-c
-c     data mcheps(1) / o1451000000000000 /
-c     data mcheps(2) / o0000000000000000 /
-c
-c     data minmag(1) / o1771000000000000 /
-c     data minmag(2) / o0000000000000000 /
-c
-c     data maxmag(1) / o0777777777777777 /
-c     data maxmag(2) / o0007777777777777 /
-c
-c     Machine constants for the Burroughs 1700 system.
-c
-c     data mcheps(1) / zcc6800000 /
-c     data mcheps(2) / z000000000 /
-c
-c     data minmag(1) / zc00800000 /
-c     data minmag(2) / z000000000 /
-c
-c     data maxmag(1) / zdffffffff /
-c     data maxmag(2) / zfffffffff /
-c
-c     Machine constants for the Univac 1100 series.
-c
-c     data mcheps(1),mcheps(2) / o170640000000, o000000000000 /
-c     data minmag(1),minmag(2) / o000040000000, o000000000000 /
-c     data maxmag(1),maxmag(2) / o377777777777, o777777777777 /
-c
-c     Machine constants for the Data General Eclipse S/200.
-c
-c     Note - it may be appropriate to include the following card -
-c     static dmach(3)
-c
-c     data minmag/20k,3*0/,maxmag/77777k,3*177777k/
-c     data mcheps/32020k,3*0/
-c
-c     Machine constants for the Harris 220.
-c
-c     data mcheps(1),mcheps(2) / '20000000, '00000334 /
-c     data minmag(1),minmag(2) / '20000000, '00000201 /
-c     data maxmag(1),maxmag(2) / '37777777, '37777577 /
-c
-c     Machine constants for the Cray-1.
-c
-c     data mcheps(1) / 0376424000000000000000b /
-c     data mcheps(2) / 0000000000000000000000b /
-c
-c     data minmag(1) / 0200034000000000000000b /
-c     data minmag(2) / 0000000000000000000000b /
-c
-c     data maxmag(1) / 0577777777777777777777b /
-c     data maxmag(2) / 0000007777777777777776b /
-c
-c     Machine constants for the Prime 400.
-c
-c     data mcheps(1),mcheps(2) / :10000000000, :00000000123 /
-c     data minmag(1),minmag(2) / :10000000000, :00000100000 /
-c     data maxmag(1),maxmag(2) / :17777777777, :37777677776 /
-c
-c     Machine constants for the VAX-11.
-c
-c     data mcheps(1),mcheps(2) /   9472,  0 /
-c     data minmag(1),minmag(2) /    128,  0 /
-c     data maxmag(1),maxmag(2) / -32769, -1 /
-c
-c     Machine constants for IEEE machines.
-c
-      data dmach(1) /2.22044604926d-16/
-      data dmach(2) /2.22507385852d-308/
-      data dmach(3) /1.79769313485d+308/
-c
-      dpmpar = dmach(i)
-      return
-c
-c     Last card of function dpmpar.
-c
-      end
--- a/src/enorm.f
+++ /dev/null
@@ -1,108 +0,0 @@
-      double precision function enorm(n,x)
-      integer n
-      double precision x(n)
-c     **********
-c
-c     function enorm
-c
-c     given an n-vector x, this function calculates the
-c     euclidean norm of x.
-c
-c     the euclidean norm is computed by accumulating the sum of
-c     squares in three different sums. the sums of squares for the
-c     small and large components are scaled so that no overflows
-c     occur. non-destructive underflows are permitted. underflows
-c     and overflows do not occur in the computation of the unscaled
-c     sum of squares for the intermediate components.
-c     the definitions of small, intermediate and large components
-c     depend on two constants, rdwarf and rgiant. the main
-c     restrictions on these constants are that rdwarf**2 not
-c     underflow and rgiant**2 not overflow. the constants
-c     given here are suitable for every known computer.
-c
-c     the function statement is
-c
-c       double precision function enorm(n,x)
-c
-c     where
-c
-c       n is a positive integer input variable.
-c
-c       x is an input array of length n.
-c
-c     subprograms called
-c
-c       fortran-supplied ... dabs,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i
-      double precision agiant,floatn,one,rdwarf,rgiant,s1,s2,s3,xabs,
-     *                 x1max,x3max,zero
-      data one,zero,rdwarf,rgiant /1.0d0,0.0d0,3.834d-20,1.304d19/
-      s1 = zero
-      s2 = zero
-      s3 = zero
-      x1max = zero
-      x3max = zero
-      floatn = n
-      agiant = rgiant/floatn
-      do 90 i = 1, n
-         xabs = dabs(x(i))
-         if (xabs .gt. rdwarf .and. xabs .lt. agiant) go to 70
-            if (xabs .le. rdwarf) go to 30
-c
-c              sum for large components.
-c
-               if (xabs .le. x1max) go to 10
-                  s1 = one + s1*(x1max/xabs)**2
-                  x1max = xabs
-                  go to 20
-   10          continue
-                  s1 = s1 + (xabs/x1max)**2
-   20          continue
-               go to 60
-   30       continue
-c
-c              sum for small components.
-c
-               if (xabs .le. x3max) go to 40
-                  s3 = one + s3*(x3max/xabs)**2
-                  x3max = xabs
-                  go to 50
-   40          continue
-                  if (xabs .ne. zero) s3 = s3 + (xabs/x3max)**2
-   50          continue
-   60       continue
-            go to 80
-   70    continue
-c
-c           sum for intermediate components.
-c
-            s2 = s2 + xabs**2
-   80    continue
-   90    continue
-c
-c     calculation of norm.
-c
-      if (s1 .eq. zero) go to 100
-         enorm = x1max*dsqrt(s1+(s2/x1max)/x1max)
-         go to 130
-  100 continue
-         if (s2 .eq. zero) go to 110
-            if (s2 .ge. x3max)
-     *         enorm = dsqrt(s2*(one+(x3max/s2)*(x3max*s3)))
-            if (s2 .lt. x3max)
-     *         enorm = dsqrt(x3max*((s2/x3max)+(x3max*s3)))
-            go to 120
-  110    continue
-            enorm = x3max*dsqrt(s3)
-  120    continue
-  130 continue
-      return
-c
-c     last card of function enorm.
-c
-      end
--- a/src/fdjac2.f
+++ /dev/null
@@ -1,107 +0,0 @@
-      subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
-      integer m,n,ldfjac,iflag
-      double precision epsfcn
-      double precision x(n),fvec(m),fjac(ldfjac,n),wa(m)
-c     **********
-c
-c     subroutine fdjac2
-c
-c     this subroutine computes a forward-difference approximation
-c     to the m by n jacobian matrix associated with a specified
-c     problem of m functions in n variables.
-c
-c     the subroutine statement is
-c
-c       subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
-c
-c     where
-c
-c       fcn is the name of the user-supplied subroutine which
-c         calculates the functions. fcn must be declared
-c         in an external statement in the user calling
-c         program, and should be written as follows.
-c
-c         subroutine fcn(m,n,x,fvec,iflag)
-c         integer m,n,iflag
-c         double precision x(n),fvec(m)
-c         ----------
-c         calculate the functions at x and
-c         return this vector in fvec.
-c         ----------
-c         return
-c         end
-c
-c         the value of iflag should not be changed by fcn unless
-c         the user wants to terminate execution of fdjac2.
-c         in this case set iflag to a negative integer.
-c
-c       m is a positive integer input variable set to the number
-c         of functions.
-c
-c       n is a positive integer input variable set to the number
-c         of variables. n must not exceed m.
-c
-c       x is an input array of length n.
-c
-c       fvec is an input array of length m which must contain the
-c         functions evaluated at x.
-c
-c       fjac is an output m by n array which contains the
-c         approximation to the jacobian matrix evaluated at x.
-c
-c       ldfjac is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array fjac.
-c
-c       iflag is an integer variable which can be used to terminate
-c         the execution of fdjac2. see description of fcn.
-c
-c       epsfcn is an input variable used in determining a suitable
-c         step length for the forward-difference approximation. this
-c         approximation assumes that the relative errors in the
-c         functions are of the order of epsfcn. if epsfcn is less
-c         than the machine precision, it is assumed that the relative
-c         errors in the functions are of the order of the machine
-c         precision.
-c
-c       wa is a work array of length m.
-c
-c     subprograms called
-c
-c       user-supplied ...... fcn
-c
-c       minpack-supplied ... dpmpar
-c
-c       fortran-supplied ... dabs,dmax1,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j
-      double precision eps,epsmch,h,temp,zero
-      double precision dpmpar
-      data zero /0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-      eps = dsqrt(dmax1(epsfcn,epsmch))
-      do 20 j = 1, n
-         temp = x(j)
-         h = eps*dabs(temp)
-         if (h .eq. zero) h = eps
-         x(j) = temp + h
-         call fcn(m,n,x,wa,iflag)
-         if (iflag .lt. 0) go to 30
-         x(j) = temp
-         do 10 i = 1, m
-            fjac(i,j) = (wa(i) - fvec(i))/h
-   10       continue
-   20    continue
-   30 continue
-      return
-c
-c     last card of subroutine fdjac2.
-c
-      end
--- a/src/lmder.f
+++ /dev/null
@@ -1,452 +0,0 @@
-      subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,
-     *                 maxfev,diag,mode,factor,nprint,info,nfev,njev,
-     *                 ipvt,qtf,wa1,wa2,wa3,wa4)
-      integer m,n,ldfjac,maxfev,mode,nprint,info,nfev,njev
-      integer ipvt(n)
-      double precision ftol,xtol,gtol,factor
-      double precision x(n),fvec(m),fjac(ldfjac,n),diag(n),qtf(n),
-     *                 wa1(n),wa2(n),wa3(n),wa4(m)
-c     **********
-c
-c     subroutine lmder
-c
-c     the purpose of lmder is to minimize the sum of the squares of
-c     m nonlinear functions in n variables by a modification of
-c     the levenberg-marquardt algorithm. the user must provide a
-c     subroutine which calculates the functions and the jacobian.
-c
-c     the subroutine statement is
-c
-c       subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,
-c                        maxfev,diag,mode,factor,nprint,info,nfev,
-c                        njev,ipvt,qtf,wa1,wa2,wa3,wa4)
-c
-c     where
-c
-c       fcn is the name of the user-supplied subroutine which
-c         calculates the functions and the jacobian. fcn must
-c         be declared in an external statement in the user
-c         calling program, and should be written as follows.
-c
-c         subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
-c         integer m,n,ldfjac,iflag
-c         double precision x(n),fvec(m),fjac(ldfjac,n)
-c         ----------
-c         if iflag = 1 calculate the functions at x and
-c         return this vector in fvec. do not alter fjac.
-c         if iflag = 2 calculate the jacobian at x and
-c         return this matrix in fjac. do not alter fvec.
-c         ----------
-c         return
-c         end
-c
-c         the value of iflag should not be changed by fcn unless
-c         the user wants to terminate execution of lmder.
-c         in this case set iflag to a negative integer.
-c
-c       m is a positive integer input variable set to the number
-c         of functions.
-c
-c       n is a positive integer input variable set to the number
-c         of variables. n must not exceed m.
-c
-c       x is an array of length n. on input x must contain
-c         an initial estimate of the solution vector. on output x
-c         contains the final estimate of the solution vector.
-c
-c       fvec is an output array of length m which contains
-c         the functions evaluated at the output x.
-c
-c       fjac is an output m by n array. the upper n by n submatrix
-c         of fjac contains an upper triangular matrix r with
-c         diagonal elements of nonincreasing magnitude such that
-c
-c                t     t           t
-c               p *(jac *jac)*p = r *r,
-c
-c         where p is a permutation matrix and jac is the final
-c         calculated jacobian. column j of p is column ipvt(j)
-c         (see below) of the identity matrix. the lower trapezoidal
-c         part of fjac contains information generated during
-c         the computation of r.
-c
-c       ldfjac is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array fjac.
-c
-c       ftol is a nonnegative input variable. termination
-c         occurs when both the actual and predicted relative
-c         reductions in the sum of squares are at most ftol.
-c         therefore, ftol measures the relative error desired
-c         in the sum of squares.
-c
-c       xtol is a nonnegative input variable. termination
-c         occurs when the relative error between two consecutive
-c         iterates is at most xtol. therefore, xtol measures the
-c         relative error desired in the approximate solution.
-c
-c       gtol is a nonnegative input variable. termination
-c         occurs when the cosine of the angle between fvec and
-c         any column of the jacobian is at most gtol in absolute
-c         value. therefore, gtol measures the orthogonality
-c         desired between the function vector and the columns
-c         of the jacobian.
-c
-c       maxfev is a positive integer input variable. termination
-c         occurs when the number of calls to fcn with iflag = 1
-c         has reached maxfev.
-c
-c       diag is an array of length n. if mode = 1 (see
-c         below), diag is internally set. if mode = 2, diag
-c         must contain positive entries that serve as
-c         multiplicative scale factors for the variables.
-c
-c       mode is an integer input variable. if mode = 1, the
-c         variables will be scaled internally. if mode = 2,
-c         the scaling is specified by the input diag. other
-c         values of mode are equivalent to mode = 1.
-c
-c       factor is a positive input variable used in determining the
-c         initial step bound. this bound is set to the product of
-c         factor and the euclidean norm of diag*x if nonzero, or else
-c         to factor itself. in most cases factor should lie in the
-c         interval (.1,100.).100. is a generally recommended value.
-c
-c       nprint is an integer input variable that enables controlled
-c         printing of iterates if it is positive. in this case,
-c         fcn is called with iflag = 0 at the beginning of the first
-c         iteration and every nprint iterations thereafter and
-c         immediately prior to return, with x, fvec, and fjac
-c         available for printing. fvec and fjac should not be
-c         altered. if nprint is not positive, no special calls
-c         of fcn with iflag = 0 are made.
-c
-c       info is an integer output variable. if the user has
-c         terminated execution, info is set to the (negative)
-c         value of iflag. see description of fcn. otherwise,
-c         info is set as follows.
-c
-c         info = 0  improper input parameters.
-c
-c         info = 1  both actual and predicted relative reductions
-c                   in the sum of squares are at most ftol.
-c
-c         info = 2  relative error between two consecutive iterates
-c                   is at most xtol.
-c
-c         info = 3  conditions for info = 1 and info = 2 both hold.
-c
-c         info = 4  the cosine of the angle between fvec and any
-c                   column of the jacobian is at most gtol in
-c                   absolute value.
-c
-c         info = 5  number of calls to fcn with iflag = 1 has
-c                   reached maxfev.
-c
-c         info = 6  ftol is too small. no further reduction in
-c                   the sum of squares is possible.
-c
-c         info = 7  xtol is too small. no further improvement in
-c                   the approximate solution x is possible.
-c
-c         info = 8  gtol is too small. fvec is orthogonal to the
-c                   columns of the jacobian to machine precision.
-c
-c       nfev is an integer output variable set to the number of
-c         calls to fcn with iflag = 1.
-c
-c       njev is an integer output variable set to the number of
-c         calls to fcn with iflag = 2.
-c
-c       ipvt is an integer output array of length n. ipvt
-c         defines a permutation matrix p such that jac*p = q*r,
-c         where jac is the final calculated jacobian, q is
-c         orthogonal (not stored), and r is upper triangular
-c         with diagonal elements of nonincreasing magnitude.
-c         column j of p is column ipvt(j) of the identity matrix.
-c
-c       qtf is an output array of length n which contains
-c         the first n elements of the vector (q transpose)*fvec.
-c
-c       wa1, wa2, and wa3 are work arrays of length n.
-c
-c       wa4 is a work array of length m.
-c
-c     subprograms called
-c
-c       user-supplied ...... fcn
-c
-c       minpack-supplied ... dpmpar,enorm,lmpar,qrfac
-c
-c       fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,iflag,iter,j,l
-      double precision actred,delta,dirder,epsmch,fnorm,fnorm1,gnorm,
-     *                 one,par,pnorm,prered,p1,p5,p25,p75,p0001,ratio,
-     *                 sum,temp,temp1,temp2,xnorm,zero
-      double precision dpmpar,enorm
-      data one,p1,p5,p25,p75,p0001,zero
-     *     /1.0d0,1.0d-1,5.0d-1,2.5d-1,7.5d-1,1.0d-4,0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-      info = 0
-      iflag = 0
-      nfev = 0
-      njev = 0
-c
-c     check the input parameters for errors.
-c
-      if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. m
-     *    .or. ftol .lt. zero .or. xtol .lt. zero .or. gtol .lt. zero
-     *    .or. maxfev .le. 0 .or. factor .le. zero) go to 300
-      if (mode .ne. 2) go to 20
-      do 10 j = 1, n
-         if (diag(j) .le. zero) go to 300
-   10    continue
-   20 continue
-c
-c     evaluate the function at the starting point
-c     and calculate its norm.
-c
-      iflag = 1
-      call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
-      nfev = 1
-      if (iflag .lt. 0) go to 300
-      fnorm = enorm(m,fvec)
-c
-c     initialize levenberg-marquardt parameter and iteration counter.
-c
-      par = zero
-      iter = 1
-c
-c     beginning of the outer loop.
-c
-   30 continue
-c
-c        calculate the jacobian matrix.
-c
-         iflag = 2
-         call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
-         njev = njev + 1
-         if (iflag .lt. 0) go to 300
-c
-c        if requested, call fcn to enable printing of iterates.
-c
-         if (nprint .le. 0) go to 40
-         iflag = 0
-         if (mod(iter-1,nprint) .eq. 0)
-     *      call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
-         if (iflag .lt. 0) go to 300
-   40    continue
-c
-c        compute the qr factorization of the jacobian.
-c
-         call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3)
-c
-c        on the first iteration and if mode is 1, scale according
-c        to the norms of the columns of the initial jacobian.
-c
-         if (iter .ne. 1) go to 80
-         if (mode .eq. 2) go to 60
-         do 50 j = 1, n
-            diag(j) = wa2(j)
-            if (wa2(j) .eq. zero) diag(j) = one
-   50       continue
-   60    continue
-c
-c        on the first iteration, calculate the norm of the scaled x
-c        and initialize the step bound delta.
-c
-         do 70 j = 1, n
-            wa3(j) = diag(j)*x(j)
-   70       continue
-         xnorm = enorm(n,wa3)
-         delta = factor*xnorm
-         if (delta .eq. zero) delta = factor
-   80    continue
-c
-c        form (q transpose)*fvec and store the first n components in
-c        qtf.
-c
-         do 90 i = 1, m
-            wa4(i) = fvec(i)
-   90       continue
-         do 130 j = 1, n
-            if (fjac(j,j) .eq. zero) go to 120
-            sum = zero
-            do 100 i = j, m
-               sum = sum + fjac(i,j)*wa4(i)
-  100          continue
-            temp = -sum/fjac(j,j)
-            do 110 i = j, m
-               wa4(i) = wa4(i) + fjac(i,j)*temp
-  110          continue
-  120       continue
-            fjac(j,j) = wa1(j)
-            qtf(j) = wa4(j)
-  130       continue
-c
-c        compute the norm of the scaled gradient.
-c
-         gnorm = zero
-         if (fnorm .eq. zero) go to 170
-         do 160 j = 1, n
-            l = ipvt(j)
-            if (wa2(l) .eq. zero) go to 150
-            sum = zero
-            do 140 i = 1, j
-               sum = sum + fjac(i,j)*(qtf(i)/fnorm)
-  140          continue
-            gnorm = dmax1(gnorm,dabs(sum/wa2(l)))
-  150       continue
-  160       continue
-  170    continue
-c
-c        test for convergence of the gradient norm.
-c
-         if (gnorm .le. gtol) info = 4
-         if (info .ne. 0) go to 300
-c
-c        rescale if necessary.
-c
-         if (mode .eq. 2) go to 190
-         do 180 j = 1, n
-            diag(j) = dmax1(diag(j),wa2(j))
-  180       continue
-  190    continue
-c
-c        beginning of the inner loop.
-c
-  200    continue
-c
-c           determine the levenberg-marquardt parameter.
-c
-            call lmpar(n,fjac,ldfjac,ipvt,diag,qtf,delta,par,wa1,wa2,
-     *                 wa3,wa4)
-c
-c           store the direction p and x + p. calculate the norm of p.
-c
-            do 210 j = 1, n
-               wa1(j) = -wa1(j)
-               wa2(j) = x(j) + wa1(j)
-               wa3(j) = diag(j)*wa1(j)
-  210          continue
-            pnorm = enorm(n,wa3)
-c
-c           on the first iteration, adjust the initial step bound.
-c
-            if (iter .eq. 1) delta = dmin1(delta,pnorm)
-c
-c           evaluate the function at x + p and calculate its norm.
-c
-            iflag = 1
-            call fcn(m,n,wa2,wa4,fjac,ldfjac,iflag)
-            nfev = nfev + 1
-            if (iflag .lt. 0) go to 300
-            fnorm1 = enorm(m,wa4)
-c
-c           compute the scaled actual reduction.
-c
-            actred = -one
-            if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
-c
-c           compute the scaled predicted reduction and
-c           the scaled directional derivative.
-c
-            do 230 j = 1, n
-               wa3(j) = zero
-               l = ipvt(j)
-               temp = wa1(l)
-               do 220 i = 1, j
-                  wa3(i) = wa3(i) + fjac(i,j)*temp
-  220             continue
-  230          continue
-            temp1 = enorm(n,wa3)/fnorm
-            temp2 = (dsqrt(par)*pnorm)/fnorm
-            prered = temp1**2 + temp2**2/p5
-            dirder = -(temp1**2 + temp2**2)
-c
-c           compute the ratio of the actual to the predicted
-c           reduction.
-c
-            ratio = zero
-            if (prered .ne. zero) ratio = actred/prered
-c
-c           update the step bound.
-c
-            if (ratio .gt. p25) go to 240
-               if (actred .ge. zero) temp = p5
-               if (actred .lt. zero)
-     *            temp = p5*dirder/(dirder + p5*actred)
-               if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1
-               delta = temp*dmin1(delta,pnorm/p1)
-               par = par/temp
-               go to 260
-  240       continue
-               if (par .ne. zero .and. ratio .lt. p75) go to 250
-               delta = pnorm/p5
-               par = p5*par
-  250          continue
-  260       continue
-c
-c           test for successful iteration.
-c
-            if (ratio .lt. p0001) go to 290
-c
-c           successful iteration. update x, fvec, and their norms.
-c
-            do 270 j = 1, n
-               x(j) = wa2(j)
-               wa2(j) = diag(j)*x(j)
-  270          continue
-            do 280 i = 1, m
-               fvec(i) = wa4(i)
-  280          continue
-            xnorm = enorm(n,wa2)
-            fnorm = fnorm1
-            iter = iter + 1
-  290       continue
-c
-c           tests for convergence.
-c
-            if (dabs(actred) .le. ftol .and. prered .le. ftol
-     *          .and. p5*ratio .le. one) info = 1
-            if (delta .le. xtol*xnorm) info = 2
-            if (dabs(actred) .le. ftol .and. prered .le. ftol
-     *          .and. p5*ratio .le. one .and. info .eq. 2) info = 3
-            if (info .ne. 0) go to 300
-c
-c           tests for termination and stringent tolerances.
-c
-            if (nfev .ge. maxfev) info = 5
-            if (dabs(actred) .le. epsmch .and. prered .le. epsmch
-     *          .and. p5*ratio .le. one) info = 6
-            if (delta .le. epsmch*xnorm) info = 7
-            if (gnorm .le. epsmch) info = 8
-            if (info .ne. 0) go to 300
-c
-c           end of the inner loop. repeat if iteration unsuccessful.
-c
-            if (ratio .lt. p0001) go to 200
-c
-c        end of the outer loop.
-c
-         go to 30
-  300 continue
-c
-c     termination, either normal or user imposed.
-c
-      if (iflag .lt. 0) info = iflag
-      iflag = 0
-      if (nprint .gt. 0) call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
-      return
-c
-c     last card of subroutine lmder.
-c
-      end
--- a/src/lmdif.f
+++ /dev/null
@@ -1,454 +0,0 @@
-      subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn,
-     *                 diag,mode,factor,nprint,info,nfev,fjac,ldfjac,
-     *                 ipvt,qtf,wa1,wa2,wa3,wa4)
-      integer m,n,maxfev,mode,nprint,info,nfev,ldfjac
-      integer ipvt(n)
-      double precision ftol,xtol,gtol,epsfcn,factor
-      double precision x(n),fvec(m),diag(n),fjac(ldfjac,n),qtf(n),
-     *                 wa1(n),wa2(n),wa3(n),wa4(m)
-      external fcn
-c     **********
-c
-c     subroutine lmdif
-c
-c     the purpose of lmdif is to minimize the sum of the squares of
-c     m nonlinear functions in n variables by a modification of
-c     the levenberg-marquardt algorithm. the user must provide a
-c     subroutine which calculates the functions. the jacobian is
-c     then calculated by a forward-difference approximation.
-c
-c     the subroutine statement is
-c
-c       subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn,
-c                        diag,mode,factor,nprint,info,nfev,fjac,
-c                        ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4)
-c
-c     where
-c
-c       fcn is the name of the user-supplied subroutine which
-c         calculates the functions. fcn must be declared
-c         in an external statement in the user calling
-c         program, and should be written as follows.
-c
-c         subroutine fcn(m,n,x,fvec,iflag)
-c         integer m,n,iflag
-c         double precision x(n),fvec(m)
-c         ----------
-c         calculate the functions at x and
-c         return this vector in fvec.
-c         ----------
-c         return
-c         end
-c
-c         the value of iflag should not be changed by fcn unless
-c         the user wants to terminate execution of lmdif.
-c         in this case set iflag to a negative integer.
-c
-c       m is a positive integer input variable set to the number
-c         of functions.
-c
-c       n is a positive integer input variable set to the number
-c         of variables. n must not exceed m.
-c
-c       x is an array of length n. on input x must contain
-c         an initial estimate of the solution vector. on output x
-c         contains the final estimate of the solution vector.
-c
-c       fvec is an output array of length m which contains
-c         the functions evaluated at the output x.
-c
-c       ftol is a nonnegative input variable. termination
-c         occurs when both the actual and predicted relative
-c         reductions in the sum of squares are at most ftol.
-c         therefore, ftol measures the relative error desired
-c         in the sum of squares.
-c
-c       xtol is a nonnegative input variable. termination
-c         occurs when the relative error between two consecutive
-c         iterates is at most xtol. therefore, xtol measures the
-c         relative error desired in the approximate solution.
-c
-c       gtol is a nonnegative input variable. termination
-c         occurs when the cosine of the angle between fvec and
-c         any column of the jacobian is at most gtol in absolute
-c         value. therefore, gtol measures the orthogonality
-c         desired between the function vector and the columns
-c         of the jacobian.
-c
-c       maxfev is a positive integer input variable. termination
-c         occurs when the number of calls to fcn is at least
-c         maxfev by the end of an iteration.
-c
-c       epsfcn is an input variable used in determining a suitable
-c         step length for the forward-difference approximation. this
-c         approximation assumes that the relative errors in the
-c         functions are of the order of epsfcn. if epsfcn is less
-c         than the machine precision, it is assumed that the relative
-c         errors in the functions are of the order of the machine
-c         precision.
-c
-c       diag is an array of length n. if mode = 1 (see
-c         below), diag is internally set. if mode = 2, diag
-c         must contain positive entries that serve as
-c         multiplicative scale factors for the variables.
-c
-c       mode is an integer input variable. if mode = 1, the
-c         variables will be scaled internally. if mode = 2,
-c         the scaling is specified by the input diag. other
-c         values of mode are equivalent to mode = 1.
-c
-c       factor is a positive input variable used in determining the
-c         initial step bound. this bound is set to the product of
-c         factor and the euclidean norm of diag*x if nonzero, or else
-c         to factor itself. in most cases factor should lie in the
-c         interval (.1,100.). 100. is a generally recommended value.
-c
-c       nprint is an integer input variable that enables controlled
-c         printing of iterates if it is positive. in this case,
-c         fcn is called with iflag = 0 at the beginning of the first
-c         iteration and every nprint iterations thereafter and
-c         immediately prior to return, with x and fvec available
-c         for printing. if nprint is not positive, no special calls
-c         of fcn with iflag = 0 are made.
-c
-c       info is an integer output variable. if the user has
-c         terminated execution, info is set to the (negative)
-c         value of iflag. see description of fcn. otherwise,
-c         info is set as follows.
-c
-c         info = 0  improper input parameters.
-c
-c         info = 1  both actual and predicted relative reductions
-c                   in the sum of squares are at most ftol.
-c
-c         info = 2  relative error between two consecutive iterates
-c                   is at most xtol.
-c
-c         info = 3  conditions for info = 1 and info = 2 both hold.
-c
-c         info = 4  the cosine of the angle between fvec and any
-c                   column of the jacobian is at most gtol in
-c                   absolute value.
-c
-c         info = 5  number of calls to fcn has reached or
-c                   exceeded maxfev.
-c
-c         info = 6  ftol is too small. no further reduction in
-c                   the sum of squares is possible.
-c
-c         info = 7  xtol is too small. no further improvement in
-c                   the approximate solution x is possible.
-c
-c         info = 8  gtol is too small. fvec is orthogonal to the
-c                   columns of the jacobian to machine precision.
-c
-c       nfev is an integer output variable set to the number of
-c         calls to fcn.
-c
-c       fjac is an output m by n array. the upper n by n submatrix
-c         of fjac contains an upper triangular matrix r with
-c         diagonal elements of nonincreasing magnitude such that
-c
-c                t     t           t
-c               p *(jac *jac)*p = r *r,
-c
-c         where p is a permutation matrix and jac is the final
-c         calculated jacobian. column j of p is column ipvt(j)
-c         (see below) of the identity matrix. the lower trapezoidal
-c         part of fjac contains information generated during
-c         the computation of r.
-c
-c       ldfjac is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array fjac.
-c
-c       ipvt is an integer output array of length n. ipvt
-c         defines a permutation matrix p such that jac*p = q*r,
-c         where jac is the final calculated jacobian, q is
-c         orthogonal (not stored), and r is upper triangular
-c         with diagonal elements of nonincreasing magnitude.
-c         column j of p is column ipvt(j) of the identity matrix.
-c
-c       qtf is an output array of length n which contains
-c         the first n elements of the vector (q transpose)*fvec.
-c
-c       wa1, wa2, and wa3 are work arrays of length n.
-c
-c       wa4 is a work array of length m.
-c
-c     subprograms called
-c
-c       user-supplied ...... fcn
-c
-c       minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac
-c
-c       fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,iflag,iter,j,l
-      double precision actred,delta,dirder,epsmch,fnorm,fnorm1,gnorm,
-     *                 one,par,pnorm,prered,p1,p5,p25,p75,p0001,ratio,
-     *                 sum,temp,temp1,temp2,xnorm,zero
-      double precision dpmpar,enorm
-      data one,p1,p5,p25,p75,p0001,zero
-     *     /1.0d0,1.0d-1,5.0d-1,2.5d-1,7.5d-1,1.0d-4,0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-      info = 0
-      iflag = 0
-      nfev = 0
-c
-c     check the input parameters for errors.
-c
-      if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. m
-     *    .or. ftol .lt. zero .or. xtol .lt. zero .or. gtol .lt. zero
-     *    .or. maxfev .le. 0 .or. factor .le. zero) go to 300
-      if (mode .ne. 2) go to 20
-      do 10 j = 1, n
-         if (diag(j) .le. zero) go to 300
-   10    continue
-   20 continue
-c
-c     evaluate the function at the starting point
-c     and calculate its norm.
-c
-      iflag = 1
-      call fcn(m,n,x,fvec,iflag)
-      nfev = 1
-      if (iflag .lt. 0) go to 300
-      fnorm = enorm(m,fvec)
-c
-c     initialize levenberg-marquardt parameter and iteration counter.
-c
-      par = zero
-      iter = 1
-c
-c     beginning of the outer loop.
-c
-   30 continue
-c
-c        calculate the jacobian matrix.
-c
-         iflag = 2
-         call fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa4)
-         nfev = nfev + n
-         if (iflag .lt. 0) go to 300
-c
-c        if requested, call fcn to enable printing of iterates.
-c
-         if (nprint .le. 0) go to 40
-         iflag = 0
-         if (mod(iter-1,nprint) .eq. 0) call fcn(m,n,x,fvec,iflag)
-         if (iflag .lt. 0) go to 300
-   40    continue
-c
-c        compute the qr factorization of the jacobian.
-c
-         call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3)
-c
-c        on the first iteration and if mode is 1, scale according
-c        to the norms of the columns of the initial jacobian.
-c
-         if (iter .ne. 1) go to 80
-         if (mode .eq. 2) go to 60
-         do 50 j = 1, n
-            diag(j) = wa2(j)
-            if (wa2(j) .eq. zero) diag(j) = one
-   50       continue
-   60    continue
-c
-c        on the first iteration, calculate the norm of the scaled x
-c        and initialize the step bound delta.
-c
-         do 70 j = 1, n
-            wa3(j) = diag(j)*x(j)
-   70       continue
-         xnorm = enorm(n,wa3)
-         delta = factor*xnorm
-         if (delta .eq. zero) delta = factor
-   80    continue
-c
-c        form (q transpose)*fvec and store the first n components in
-c        qtf.
-c
-         do 90 i = 1, m
-            wa4(i) = fvec(i)
-   90       continue
-         do 130 j = 1, n
-            if (fjac(j,j) .eq. zero) go to 120
-            sum = zero
-            do 100 i = j, m
-               sum = sum + fjac(i,j)*wa4(i)
-  100          continue
-            temp = -sum/fjac(j,j)
-            do 110 i = j, m
-               wa4(i) = wa4(i) + fjac(i,j)*temp
-  110          continue
-  120       continue
-            fjac(j,j) = wa1(j)
-            qtf(j) = wa4(j)
-  130       continue
-c
-c        compute the norm of the scaled gradient.
-c
-         gnorm = zero
-         if (fnorm .eq. zero) go to 170
-         do 160 j = 1, n
-            l = ipvt(j)
-            if (wa2(l) .eq. zero) go to 150
-            sum = zero
-            do 140 i = 1, j
-               sum = sum + fjac(i,j)*(qtf(i)/fnorm)
-  140          continue
-            gnorm = dmax1(gnorm,dabs(sum/wa2(l)))
-  150       continue
-  160       continue
-  170    continue
-c
-c        test for convergence of the gradient norm.
-c
-         if (gnorm .le. gtol) info = 4
-         if (info .ne. 0) go to 300
-c
-c        rescale if necessary.
-c
-         if (mode .eq. 2) go to 190
-         do 180 j = 1, n
-            diag(j) = dmax1(diag(j),wa2(j))
-  180       continue
-  190    continue
-c
-c        beginning of the inner loop.
-c
-  200    continue
-c
-c           determine the levenberg-marquardt parameter.
-c
-            call lmpar(n,fjac,ldfjac,ipvt,diag,qtf,delta,par,wa1,wa2,
-     *                 wa3,wa4)
-c
-c           store the direction p and x + p. calculate the norm of p.
-c
-            do 210 j = 1, n
-               wa1(j) = -wa1(j)
-               wa2(j) = x(j) + wa1(j)
-               wa3(j) = diag(j)*wa1(j)
-  210          continue
-            pnorm = enorm(n,wa3)
-c
-c           on the first iteration, adjust the initial step bound.
-c
-            if (iter .eq. 1) delta = dmin1(delta,pnorm)
-c
-c           evaluate the function at x + p and calculate its norm.
-c
-            iflag = 1
-            call fcn(m,n,wa2,wa4,iflag)
-            nfev = nfev + 1
-            if (iflag .lt. 0) go to 300
-            fnorm1 = enorm(m,wa4)
-c
-c           compute the scaled actual reduction.
-c
-            actred = -one
-            if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
-c
-c           compute the scaled predicted reduction and
-c           the scaled directional derivative.
-c
-            do 230 j = 1, n
-               wa3(j) = zero
-               l = ipvt(j)
-               temp = wa1(l)
-               do 220 i = 1, j
-                  wa3(i) = wa3(i) + fjac(i,j)*temp
-  220             continue
-  230          continue
-            temp1 = enorm(n,wa3)/fnorm
-            temp2 = (dsqrt(par)*pnorm)/fnorm
-            prered = temp1**2 + temp2**2/p5
-            dirder = -(temp1**2 + temp2**2)
-c
-c           compute the ratio of the actual to the predicted
-c           reduction.
-c
-            ratio = zero
-            if (prered .ne. zero) ratio = actred/prered
-c
-c           update the step bound.
-c
-            if (ratio .gt. p25) go to 240
-               if (actred .ge. zero) temp = p5
-               if (actred .lt. zero)
-     *            temp = p5*dirder/(dirder + p5*actred)
-               if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1
-               delta = temp*dmin1(delta,pnorm/p1)
-               par = par/temp
-               go to 260
-  240       continue
-               if (par .ne. zero .and. ratio .lt. p75) go to 250
-               delta = pnorm/p5
-               par = p5*par
-  250          continue
-  260       continue
-c
-c           test for successful iteration.
-c
-            if (ratio .lt. p0001) go to 290
-c
-c           successful iteration. update x, fvec, and their norms.
-c
-            do 270 j = 1, n
-               x(j) = wa2(j)
-               wa2(j) = diag(j)*x(j)
-  270          continue
-            do 280 i = 1, m
-               fvec(i) = wa4(i)
-  280          continue
-            xnorm = enorm(n,wa2)
-            fnorm = fnorm1
-            iter = iter + 1
-  290       continue
-c
-c           tests for convergence.
-c
-            if (dabs(actred) .le. ftol .and. prered .le. ftol
-     *          .and. p5*ratio .le. one) info = 1
-            if (delta .le. xtol*xnorm) info = 2
-            if (dabs(actred) .le. ftol .and. prered .le. ftol
-     *          .and. p5*ratio .le. one .and. info .eq. 2) info = 3
-            if (info .ne. 0) go to 300
-c
-c           tests for termination and stringent tolerances.
-c
-            if (nfev .ge. maxfev) info = 5
-            if (dabs(actred) .le. epsmch .and. prered .le. epsmch
-     *          .and. p5*ratio .le. one) info = 6
-            if (delta .le. epsmch*xnorm) info = 7
-            if (gnorm .le. epsmch) info = 8
-            if (info .ne. 0) go to 300
-c
-c           end of the inner loop. repeat if iteration unsuccessful.
-c
-            if (ratio .lt. p0001) go to 200
-c
-c        end of the outer loop.
-c
-         go to 30
-  300 continue
-c
-c     termination, either normal or user imposed.
-c
-      if (iflag .lt. 0) info = iflag
-      iflag = 0
-      if (nprint .gt. 0) call fcn(m,n,x,fvec,iflag)
-      return
-c
-c     last card of subroutine lmdif.
-c
-      end
--- a/src/lmpar.f
+++ /dev/null
@@ -1,264 +0,0 @@
-      subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1,
-     *                 wa2)
-      integer n,ldr
-      integer ipvt(n)
-      double precision delta,par
-      double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n),
-     *                 wa2(n)
-c     **********
-c
-c     subroutine lmpar
-c
-c     given an m by n matrix a, an n by n nonsingular diagonal
-c     matrix d, an m-vector b, and a positive number delta,
-c     the problem is to determine a value for the parameter
-c     par such that if x solves the system
-c
-c           a*x = b ,     sqrt(par)*d*x = 0 ,
-c
-c     in the least squares sense, and dxnorm is the euclidean
-c     norm of d*x, then either par is zero and
-c
-c           (dxnorm-delta) .le. 0.1*delta ,
-c
-c     or par is positive and
-c
-c           abs(dxnorm-delta) .le. 0.1*delta .
-c
-c     this subroutine completes the solution of the problem
-c     if it is provided with the necessary information from the
-c     qr factorization, with column pivoting, of a. that is, if
-c     a*p = q*r, where p is a permutation matrix, q has orthogonal
-c     columns, and r is an upper triangular matrix with diagonal
-c     elements of nonincreasing magnitude, then lmpar expects
-c     the full upper triangle of r, the permutation matrix p,
-c     and the first n components of (q transpose)*b. on output
-c     lmpar also provides an upper triangular matrix s such that
-c
-c            t   t                   t
-c           p *(a *a + par*d*d)*p = s *s .
-c
-c     s is employed within lmpar and may be of separate interest.
-c
-c     only a few iterations are generally needed for convergence
-c     of the algorithm. if, however, the limit of 10 iterations
-c     is reached, then the output par will contain the best
-c     value obtained so far.
-c
-c     the subroutine statement is
-c
-c       subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
-c                        wa1,wa2)
-c
-c     where
-c
-c       n is a positive integer input variable set to the order of r.
-c
-c       r is an n by n array. on input the full upper triangle
-c         must contain the full upper triangle of the matrix r.
-c         on output the full upper triangle is unaltered, and the
-c         strict lower triangle contains the strict upper triangle
-c         (transposed) of the upper triangular matrix s.
-c
-c       ldr is a positive integer input variable not less than n
-c         which specifies the leading dimension of the array r.
-c
-c       ipvt is an integer input array of length n which defines the
-c         permutation matrix p such that a*p = q*r. column j of p
-c         is column ipvt(j) of the identity matrix.
-c
-c       diag is an input array of length n which must contain the
-c         diagonal elements of the matrix d.
-c
-c       qtb is an input array of length n which must contain the first
-c         n elements of the vector (q transpose)*b.
-c
-c       delta is a positive input variable which specifies an upper
-c         bound on the euclidean norm of d*x.
-c
-c       par is a nonnegative variable. on input par contains an
-c         initial estimate of the levenberg-marquardt parameter.
-c         on output par contains the final estimate.
-c
-c       x is an output array of length n which contains the least
-c         squares solution of the system a*x = b, sqrt(par)*d*x = 0,
-c         for the output par.
-c
-c       sdiag is an output array of length n which contains the
-c         diagonal elements of the upper triangular matrix s.
-c
-c       wa1 and wa2 are work arrays of length n.
-c
-c     subprograms called
-c
-c       minpack-supplied ... dpmpar,enorm,qrsolv
-c
-c       fortran-supplied ... dabs,dmax1,dmin1,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,iter,j,jm1,jp1,k,l,nsing
-      double precision dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001,
-     *                 sum,temp,zero
-      double precision dpmpar,enorm
-      data p1,p001,zero /1.0d-1,1.0d-3,0.0d0/
-c
-c     dwarf is the smallest positive magnitude.
-c
-      dwarf = dpmpar(2)
-c
-c     compute and store in x the gauss-newton direction. if the
-c     jacobian is rank-deficient, obtain a least squares solution.
-c
-      nsing = n
-      do 10 j = 1, n
-         wa1(j) = qtb(j)
-         if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1
-         if (nsing .lt. n) wa1(j) = zero
-   10    continue
-      if (nsing .lt. 1) go to 50
-      do 40 k = 1, nsing
-         j = nsing - k + 1
-         wa1(j) = wa1(j)/r(j,j)
-         temp = wa1(j)
-         jm1 = j - 1
-         if (jm1 .lt. 1) go to 30
-         do 20 i = 1, jm1
-            wa1(i) = wa1(i) - r(i,j)*temp
-   20       continue
-   30    continue
-   40    continue
-   50 continue
-      do 60 j = 1, n
-         l = ipvt(j)
-         x(l) = wa1(j)
-   60    continue
-c
-c     initialize the iteration counter.
-c     evaluate the function at the origin, and test
-c     for acceptance of the gauss-newton direction.
-c
-      iter = 0
-      do 70 j = 1, n
-         wa2(j) = diag(j)*x(j)
-   70    continue
-      dxnorm = enorm(n,wa2)
-      fp = dxnorm - delta
-      if (fp .le. p1*delta) go to 220
-c
-c     if the jacobian is not rank deficient, the newton
-c     step provides a lower bound, parl, for the zero of
-c     the function. otherwise set this bound to zero.
-c
-      parl = zero
-      if (nsing .lt. n) go to 120
-      do 80 j = 1, n
-         l = ipvt(j)
-         wa1(j) = diag(l)*(wa2(l)/dxnorm)
-   80    continue
-      do 110 j = 1, n
-         sum = zero
-         jm1 = j - 1
-         if (jm1 .lt. 1) go to 100
-         do 90 i = 1, jm1
-            sum = sum + r(i,j)*wa1(i)
-   90       continue
-  100    continue
-         wa1(j) = (wa1(j) - sum)/r(j,j)
-  110    continue
-      temp = enorm(n,wa1)
-      parl = ((fp/delta)/temp)/temp
-  120 continue
-c
-c     calculate an upper bound, paru, for the zero of the function.
-c
-      do 140 j = 1, n
-         sum = zero
-         do 130 i = 1, j
-            sum = sum + r(i,j)*qtb(i)
-  130       continue
-         l = ipvt(j)
-         wa1(j) = sum/diag(l)
-  140    continue
-      gnorm = enorm(n,wa1)
-      paru = gnorm/delta
-      if (paru .eq. zero) paru = dwarf/dmin1(delta,p1)
-c
-c     if the input par lies outside of the interval (parl,paru),
-c     set par to the closer endpoint.
-c
-      par = dmax1(par,parl)
-      par = dmin1(par,paru)
-      if (par .eq. zero) par = gnorm/dxnorm
-c
-c     beginning of an iteration.
-c
-  150 continue
-         iter = iter + 1
-c
-c        evaluate the function at the current value of par.
-c
-         if (par .eq. zero) par = dmax1(dwarf,p001*paru)
-         temp = dsqrt(par)
-         do 160 j = 1, n
-            wa1(j) = temp*diag(j)
-  160       continue
-         call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2)
-         do 170 j = 1, n
-            wa2(j) = diag(j)*x(j)
-  170       continue
-         dxnorm = enorm(n,wa2)
-         temp = fp
-         fp = dxnorm - delta
-c
-c        if the function is small enough, accept the current value
-c        of par. also test for the exceptional cases where parl
-c        is zero or the number of iterations has reached 10.
-c
-         if (dabs(fp) .le. p1*delta
-     *       .or. parl .eq. zero .and. fp .le. temp
-     *            .and. temp .lt. zero .or. iter .eq. 10) go to 220
-c
-c        compute the newton correction.
-c
-         do 180 j = 1, n
-            l = ipvt(j)
-            wa1(j) = diag(l)*(wa2(l)/dxnorm)
-  180       continue
-         do 210 j = 1, n
-            wa1(j) = wa1(j)/sdiag(j)
-            temp = wa1(j)
-            jp1 = j + 1
-            if (n .lt. jp1) go to 200
-            do 190 i = jp1, n
-               wa1(i) = wa1(i) - r(i,j)*temp
-  190          continue
-  200       continue
-  210       continue
-         temp = enorm(n,wa1)
-         parc = ((fp/delta)/temp)/temp
-c
-c        depending on the sign of the function, update parl or paru.
-c
-         if (fp .gt. zero) parl = dmax1(parl,par)
-         if (fp .lt. zero) paru = dmin1(paru,par)
-c
-c        compute an improved estimate for par.
-c
-         par = dmax1(parl,par+parc)
-c
-c        end of an iteration.
-c
-         go to 150
-  220 continue
-c
-c     termination.
-c
-      if (iter .eq. 0) par = zero
-      return
-c
-c     last card of subroutine lmpar.
-c
-      end
--- a/src/qform.f
+++ /dev/null
@@ -1,95 +0,0 @@
-      subroutine qform(m,n,q,ldq,wa)
-      integer m,n,ldq
-      double precision q(ldq,m),wa(m)
-c     **********
-c
-c     subroutine qform
-c
-c     this subroutine proceeds from the computed qr factorization of
-c     an m by n matrix a to accumulate the m by m orthogonal matrix
-c     q from its factored form.
-c
-c     the subroutine statement is
-c
-c       subroutine qform(m,n,q,ldq,wa)
-c
-c     where
-c
-c       m is a positive integer input variable set to the number
-c         of rows of a and the order of q.
-c
-c       n is a positive integer input variable set to the number
-c         of columns of a.
-c
-c       q is an m by m array. on input the full lower trapezoid in
-c         the first min(m,n) columns of q contains the factored form.
-c         on output q has been accumulated into a square matrix.
-c
-c       ldq is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array q.
-c
-c       wa is a work array of length m.
-c
-c     subprograms called
-c
-c       fortran-supplied ... min0
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j,jm1,k,l,minmn,np1
-      double precision one,sum,temp,zero
-      data one,zero /1.0d0,0.0d0/
-c
-c     zero out upper triangle of q in the first min(m,n) columns.
-c
-      minmn = min0(m,n)
-      if (minmn .lt. 2) go to 30
-      do 20 j = 2, minmn
-         jm1 = j - 1
-         do 10 i = 1, jm1
-            q(i,j) = zero
-   10       continue
-   20    continue
-   30 continue
-c
-c     initialize remaining columns to those of the identity matrix.
-c
-      np1 = n + 1
-      if (m .lt. np1) go to 60
-      do 50 j = np1, m
-         do 40 i = 1, m
-            q(i,j) = zero
-   40       continue
-         q(j,j) = one
-   50    continue
-   60 continue
-c
-c     accumulate q from its factored form.
-c
-      do 120 l = 1, minmn
-         k = minmn - l + 1
-         do 70 i = k, m
-            wa(i) = q(i,k)
-            q(i,k) = zero
-   70       continue
-         q(k,k) = one
-         if (wa(k) .eq. zero) go to 110
-         do 100 j = k, m
-            sum = zero
-            do 80 i = k, m
-               sum = sum + q(i,j)*wa(i)
-   80          continue
-            temp = sum/wa(k)
-            do 90 i = k, m
-               q(i,j) = q(i,j) - temp*wa(i)
-   90          continue
-  100       continue
-  110    continue
-  120    continue
-      return
-c
-c     last card of subroutine qform.
-c
-      end
--- a/src/qrfac.f
+++ /dev/null
@@ -1,164 +0,0 @@
-      subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
-      integer m,n,lda,lipvt
-      integer ipvt(lipvt)
-      logical pivot
-      double precision a(lda,n),rdiag(n),acnorm(n),wa(n)
-c     **********
-c
-c     subroutine qrfac
-c
-c     this subroutine uses householder transformations with column
-c     pivoting (optional) to compute a qr factorization of the
-c     m by n matrix a. that is, qrfac determines an orthogonal
-c     matrix q, a permutation matrix p, and an upper trapezoidal
-c     matrix r with diagonal elements of nonincreasing magnitude,
-c     such that a*p = q*r. the householder transformation for
-c     column k, k = 1,2,...,min(m,n), is of the form
-c
-c                           t
-c           i - (1/u(k))*u*u
-c
-c     where u has zeros in the first k-1 positions. the form of
-c     this transformation and the method of pivoting first
-c     appeared in the corresponding linpack subroutine.
-c
-c     the subroutine statement is
-c
-c       subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
-c
-c     where
-c
-c       m is a positive integer input variable set to the number
-c         of rows of a.
-c
-c       n is a positive integer input variable set to the number
-c         of columns of a.
-c
-c       a is an m by n array. on input a contains the matrix for
-c         which the qr factorization is to be computed. on output
-c         the strict upper trapezoidal part of a contains the strict
-c         upper trapezoidal part of r, and the lower trapezoidal
-c         part of a contains a factored form of q (the non-trivial
-c         elements of the u vectors described above).
-c
-c       lda is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array a.
-c
-c       pivot is a logical input variable. if pivot is set true,
-c         then column pivoting is enforced. if pivot is set false,
-c         then no column pivoting is done.
-c
-c       ipvt is an integer output array of length lipvt. ipvt
-c         defines the permutation matrix p such that a*p = q*r.
-c         column j of p is column ipvt(j) of the identity matrix.
-c         if pivot is false, ipvt is not referenced.
-c
-c       lipvt is a positive integer input variable. if pivot is false,
-c         then lipvt may be as small as 1. if pivot is true, then
-c         lipvt must be at least n.
-c
-c       rdiag is an output array of length n which contains the
-c         diagonal elements of r.
-c
-c       acnorm is an output array of length n which contains the
-c         norms of the corresponding columns of the input matrix a.
-c         if this information is not needed, then acnorm can coincide
-c         with rdiag.
-c
-c       wa is a work array of length n. if pivot is false, then wa
-c         can coincide with rdiag.
-c
-c     subprograms called
-c
-c       minpack-supplied ... dpmpar,enorm
-c
-c       fortran-supplied ... dmax1,dsqrt,min0
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j,jp1,k,kmax,minmn
-      double precision ajnorm,epsmch,one,p05,sum,temp,zero
-      double precision dpmpar,enorm
-      data one,p05,zero /1.0d0,5.0d-2,0.0d0/
-c
-c     epsmch is the machine precision.
-c
-      epsmch = dpmpar(1)
-c
-c     compute the initial column norms and initialize several arrays.
-c
-      do 10 j = 1, n
-         acnorm(j) = enorm(m,a(1,j))
-         rdiag(j) = acnorm(j)
-         wa(j) = rdiag(j)
-         if (pivot) ipvt(j) = j
-   10    continue
-c
-c     reduce a to r with householder transformations.
-c
-      minmn = min0(m,n)
-      do 110 j = 1, minmn
-         if (.not.pivot) go to 40
-c
-c        bring the column of largest norm into the pivot position.
-c
-         kmax = j
-         do 20 k = j, n
-            if (rdiag(k) .gt. rdiag(kmax)) kmax = k
-   20       continue
-         if (kmax .eq. j) go to 40
-         do 30 i = 1, m
-            temp = a(i,j)
-            a(i,j) = a(i,kmax)
-            a(i,kmax) = temp
-   30       continue
-         rdiag(kmax) = rdiag(j)
-         wa(kmax) = wa(j)
-         k = ipvt(j)
-         ipvt(j) = ipvt(kmax)
-         ipvt(kmax) = k
-   40    continue
-c
-c        compute the householder transformation to reduce the
-c        j-th column of a to a multiple of the j-th unit vector.
-c
-         ajnorm = enorm(m-j+1,a(j,j))
-         if (ajnorm .eq. zero) go to 100
-         if (a(j,j) .lt. zero) ajnorm = -ajnorm
-         do 50 i = j, m
-            a(i,j) = a(i,j)/ajnorm
-   50       continue
-         a(j,j) = a(j,j) + one
-c
-c        apply the transformation to the remaining columns
-c        and update the norms.
-c
-         jp1 = j + 1
-         if (n .lt. jp1) go to 100
-         do 90 k = jp1, n
-            sum = zero
-            do 60 i = j, m
-               sum = sum + a(i,j)*a(i,k)
-   60          continue
-            temp = sum/a(j,j)
-            do 70 i = j, m
-               a(i,k) = a(i,k) - temp*a(i,j)
-   70          continue
-            if (.not.pivot .or. rdiag(k) .eq. zero) go to 80
-            temp = a(j,k)/rdiag(k)
-            rdiag(k) = rdiag(k)*dsqrt(dmax1(zero,one-temp**2))
-            if (p05*(rdiag(k)/wa(k))**2 .gt. epsmch) go to 80
-            rdiag(k) = enorm(m-j,a(jp1,k))
-            wa(k) = rdiag(k)
-   80       continue
-   90       continue
-  100    continue
-         rdiag(j) = -ajnorm
-  110    continue
-      return
-c
-c     last card of subroutine qrfac.
-c
-      end
--- a/src/qrsolv.f
+++ /dev/null
@@ -1,193 +0,0 @@
-      subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
-      integer n,ldr
-      integer ipvt(n)
-      double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa(n)
-c     **********
-c
-c     subroutine qrsolv
-c
-c     given an m by n matrix a, an n by n diagonal matrix d,
-c     and an m-vector b, the problem is to determine an x which
-c     solves the system
-c
-c           a*x = b ,     d*x = 0 ,
-c
-c     in the least squares sense.
-c
-c     this subroutine completes the solution of the problem
-c     if it is provided with the necessary information from the
-c     qr factorization, with column pivoting, of a. that is, if
-c     a*p = q*r, where p is a permutation matrix, q has orthogonal
-c     columns, and r is an upper triangular matrix with diagonal
-c     elements of nonincreasing magnitude, then qrsolv expects
-c     the full upper triangle of r, the permutation matrix p,
-c     and the first n components of (q transpose)*b. the system
-c     a*x = b, d*x = 0, is then equivalent to
-c
-c                  t       t
-c           r*z = q *b ,  p *d*p*z = 0 ,
-c
-c     where x = p*z. if this system does not have full rank,
-c     then a least squares solution is obtained. on output qrsolv
-c     also provides an upper triangular matrix s such that
-c
-c            t   t               t
-c           p *(a *a + d*d)*p = s *s .
-c
-c     s is computed within qrsolv and may be of separate interest.
-c
-c     the subroutine statement is
-c
-c       subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
-c
-c     where
-c
-c       n is a positive integer input variable set to the order of r.
-c
-c       r is an n by n array. on input the full upper triangle
-c         must contain the full upper triangle of the matrix r.
-c         on output the full upper triangle is unaltered, and the
-c         strict lower triangle contains the strict upper triangle
-c         (transposed) of the upper triangular matrix s.
-c
-c       ldr is a positive integer input variable not less than n
-c         which specifies the leading dimension of the array r.
-c
-c       ipvt is an integer input array of length n which defines the
-c         permutation matrix p such that a*p = q*r. column j of p
-c         is column ipvt(j) of the identity matrix.
-c
-c       diag is an input array of length n which must contain the
-c         diagonal elements of the matrix d.
-c
-c       qtb is an input array of length n which must contain the first
-c         n elements of the vector (q transpose)*b.
-c
-c       x is an output array of length n which contains the least
-c         squares solution of the system a*x = b, d*x = 0.
-c
-c       sdiag is an output array of length n which contains the
-c         diagonal elements of the upper triangular matrix s.
-c
-c       wa is a work array of length n.
-c
-c     subprograms called
-c
-c       fortran-supplied ... dabs,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j,jp1,k,kp1,l,nsing
-      double precision cos,cotan,p5,p25,qtbpj,sin,sum,tan,temp,zero
-      data p5,p25,zero /5.0d-1,2.5d-1,0.0d0/
-c
-c     copy r and (q transpose)*b to preserve input and initialize s.
-c     in particular, save the diagonal elements of r in x.
-c
-      do 20 j = 1, n
-         do 10 i = j, n
-            r(i,j) = r(j,i)
-   10       continue
-         x(j) = r(j,j)
-         wa(j) = qtb(j)
-   20    continue
-c
-c     eliminate the diagonal matrix d using a givens rotation.
-c
-      do 100 j = 1, n
-c
-c        prepare the row of d to be eliminated, locating the
-c        diagonal element using p from the qr factorization.
-c
-         l = ipvt(j)
-         if (diag(l) .eq. zero) go to 90
-         do 30 k = j, n
-            sdiag(k) = zero
-   30       continue
-         sdiag(j) = diag(l)
-c
-c        the transformations to eliminate the row of d
-c        modify only a single element of (q transpose)*b
-c        beyond the first n, which is initially zero.
-c
-         qtbpj = zero
-         do 80 k = j, n
-c
-c           determine a givens rotation which eliminates the
-c           appropriate element in the current row of d.
-c
-            if (sdiag(k) .eq. zero) go to 70
-            if (dabs(r(k,k)) .ge. dabs(sdiag(k))) go to 40
-               cotan = r(k,k)/sdiag(k)
-               sin = p5/dsqrt(p25+p25*cotan**2)
-               cos = sin*cotan
-               go to 50
-   40       continue
-               tan = sdiag(k)/r(k,k)
-               cos = p5/dsqrt(p25+p25*tan**2)
-               sin = cos*tan
-   50       continue
-c
-c           compute the modified diagonal element of r and
-c           the modified element of ((q transpose)*b,0).
-c
-            r(k,k) = cos*r(k,k) + sin*sdiag(k)
-            temp = cos*wa(k) + sin*qtbpj
-            qtbpj = -sin*wa(k) + cos*qtbpj
-            wa(k) = temp
-c
-c           accumulate the tranformation in the row of s.
-c
-            kp1 = k + 1
-            if (n .lt. kp1) go to 70
-            do 60 i = kp1, n
-               temp = cos*r(i,k) + sin*sdiag(i)
-               sdiag(i) = -sin*r(i,k) + cos*sdiag(i)
-               r(i,k) = temp
-   60          continue
-   70       continue
-   80       continue
-   90    continue
-c
-c        store the diagonal element of s and restore
-c        the corresponding diagonal element of r.
-c
-         sdiag(j) = r(j,j)
-         r(j,j) = x(j)
-  100    continue
-c
-c     solve the triangular system for z. if the system is
-c     singular, then obtain a least squares solution.
-c
-      nsing = n
-      do 110 j = 1, n
-         if (sdiag(j) .eq. zero .and. nsing .eq. n) nsing = j - 1
-         if (nsing .lt. n) wa(j) = zero
-  110    continue
-      if (nsing .lt. 1) go to 150
-      do 140 k = 1, nsing
-         j = nsing - k + 1
-         sum = zero
-         jp1 = j + 1
-         if (nsing .lt. jp1) go to 130
-         do 120 i = jp1, nsing
-            sum = sum + r(i,j)*wa(i)
-  120       continue
-  130    continue
-         wa(j) = (wa(j) - sum)/sdiag(j)
-  140    continue
-  150 continue
-c
-c     permute the components of z back to components of x.
-c
-      do 160 j = 1, n
-         l = ipvt(j)
-         x(l) = wa(j)
-  160    continue
-      return
-c
-c     last card of subroutine qrsolv.
-c
-      end
--- a/src/r1mpyq.f
+++ /dev/null
@@ -1,92 +0,0 @@
-      subroutine r1mpyq(m,n,a,lda,v,w)
-      integer m,n,lda
-      double precision a(lda,n),v(n),w(n)
-c     **********
-c
-c     subroutine r1mpyq
-c
-c     given an m by n matrix a, this subroutine computes a*q where
-c     q is the product of 2*(n - 1) transformations
-c
-c           gv(n-1)*...*gv(1)*gw(1)*...*gw(n-1)
-c
-c     and gv(i), gw(i) are givens rotations in the (i,n) plane which
-c     eliminate elements in the i-th and n-th planes, respectively.
-c     q itself is not given, rather the information to recover the
-c     gv, gw rotations is supplied.
-c
-c     the subroutine statement is
-c
-c       subroutine r1mpyq(m,n,a,lda,v,w)
-c
-c     where
-c
-c       m is a positive integer input variable set to the number
-c         of rows of a.
-c
-c       n is a positive integer input variable set to the number
-c         of columns of a.
-c
-c       a is an m by n array. on input a must contain the matrix
-c         to be postmultiplied by the orthogonal matrix q
-c         described above. on output a*q has replaced a.
-c
-c       lda is a positive integer input variable not less than m
-c         which specifies the leading dimension of the array a.
-c
-c       v is an input array of length n. v(i) must contain the
-c         information necessary to recover the givens rotation gv(i)
-c         described above.
-c
-c       w is an input array of length n. w(i) must contain the
-c         information necessary to recover the givens rotation gw(i)
-c         described above.
-c
-c     subroutines called
-c
-c       fortran-supplied ... dabs,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more
-c
-c     **********
-      integer i,j,nmj,nm1
-      double precision cos,one,sin,temp
-      data one /1.0d0/
-c
-c     apply the first set of givens rotations to a.
-c
-      nm1 = n - 1
-      if (nm1 .lt. 1) go to 50
-      do 20 nmj = 1, nm1
-         j = n - nmj
-         if (dabs(v(j)) .gt. one) cos = one/v(j)
-         if (dabs(v(j)) .gt. one) sin = dsqrt(one-cos**2)
-         if (dabs(v(j)) .le. one) sin = v(j)
-         if (dabs(v(j)) .le. one) cos = dsqrt(one-sin**2)
-         do 10 i = 1, m
-            temp = cos*a(i,j) - sin*a(i,n)
-            a(i,n) = sin*a(i,j) + cos*a(i,n)
-            a(i,j) = temp
-   10       continue
-   20    continue
-c
-c     apply the second set of givens rotations to a.
-c
-      do 40 j = 1, nm1
-         if (dabs(w(j)) .gt. one) cos = one/w(j)
-         if (dabs(w(j)) .gt. one) sin = dsqrt(one-cos**2)
-         if (dabs(w(j)) .le. one) sin = w(j)
-         if (dabs(w(j)) .le. one) cos = dsqrt(one-sin**2)
-         do 30 i = 1, m
-            temp = cos*a(i,j) + sin*a(i,n)
-            a(i,n) = -sin*a(i,j) + cos*a(i,n)
-            a(i,j) = temp
-   30       continue
-   40    continue
-   50 continue
-      return
-c
-c     last card of subroutine r1mpyq.
-c
-      end
--- a/src/r1updt.f
+++ /dev/null
@@ -1,207 +0,0 @@
-      subroutine r1updt(m,n,s,ls,u,v,w,sing)
-      integer m,n,ls
-      logical sing
-      double precision s(ls),u(m),v(n),w(m)
-c     **********
-c
-c     subroutine r1updt
-c
-c     given an m by n lower trapezoidal matrix s, an m-vector u,
-c     and an n-vector v, the problem is to determine an
-c     orthogonal matrix q such that
-c
-c                   t
-c           (s + u*v )*q
-c
-c     is again lower trapezoidal.
-c
-c     this subroutine determines q as the product of 2*(n - 1)
-c     transformations
-c
-c           gv(n-1)*...*gv(1)*gw(1)*...*gw(n-1)
-c
-c     where gv(i), gw(i) are givens rotations in the (i,n) plane
-c     which eliminate elements in the i-th and n-th planes,
-c     respectively. q itself is not accumulated, rather the
-c     information to recover the gv, gw rotations is returned.
-c
-c     the subroutine statement is
-c
-c       subroutine r1updt(m,n,s,ls,u,v,w,sing)
-c
-c     where
-c
-c       m is a positive integer input variable set to the number
-c         of rows of s.
-c
-c       n is a positive integer input variable set to the number
-c         of columns of s. n must not exceed m.
-c
-c       s is an array of length ls. on input s must contain the lower
-c         trapezoidal matrix s stored by columns. on output s contains
-c         the lower trapezoidal matrix produced as described above.
-c
-c       ls is a positive integer input variable not less than
-c         (n*(2*m-n+1))/2.
-c
-c       u is an input array of length m which must contain the
-c         vector u.
-c
-c       v is an array of length n. on input v must contain the vector
-c         v. on output v(i) contains the information necessary to
-c         recover the givens rotation gv(i) described above.
-c
-c       w is an output array of length m. w(i) contains information
-c         necessary to recover the givens rotation gw(i) described
-c         above.
-c
-c       sing is a logical output variable. sing is set true if any
-c         of the diagonal elements of the output s are zero. otherwise
-c         sing is set false.
-c
-c     subprograms called
-c
-c       minpack-supplied ... dpmpar
-c
-c       fortran-supplied ... dabs,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, kenneth e. hillstrom, jorge j. more,
-c     john l. nazareth
-c
-c     **********
-      integer i,j,jj,l,nmj,nm1
-      double precision cos,cotan,giant,one,p5,p25,sin,tan,tau,temp,
-     *                 zero
-      double precision dpmpar
-      data one,p5,p25,zero /1.0d0,5.0d-1,2.5d-1,0.0d0/
-c
-c     giant is the largest magnitude.
-c
-      giant = dpmpar(3)
-c
-c     initialize the diagonal element pointer.
-c
-      jj = (n*(2*m - n + 1))/2 - (m - n)
-c
-c     move the nontrivial part of the last column of s into w.
-c
-      l = jj
-      do 10 i = n, m
-         w(i) = s(l)
-         l = l + 1
-   10    continue
-c
-c     rotate the vector v into a multiple of the n-th unit vector
-c     in such a way that a spike is introduced into w.
-c
-      nm1 = n - 1
-      if (nm1 .lt. 1) go to 70
-      do 60 nmj = 1, nm1
-         j = n - nmj
-         jj = jj - (m - j + 1)
-         w(j) = zero
-         if (v(j) .eq. zero) go to 50
-c
-c        determine a givens rotation which eliminates the
-c        j-th element of v.
-c
-         if (dabs(v(n)) .ge. dabs(v(j))) go to 20
-            cotan = v(n)/v(j)
-            sin = p5/dsqrt(p25+p25*cotan**2)
-            cos = sin*cotan
-            tau = one
-            if (dabs(cos)*giant .gt. one) tau = one/cos
-            go to 30
-   20    continue
-            tan = v(j)/v(n)
-            cos = p5/dsqrt(p25+p25*tan**2)
-            sin = cos*tan
-            tau = sin
-   30    continue
-c
-c        apply the transformation to v and store the information
-c        necessary to recover the givens rotation.
-c
-         v(n) = sin*v(j) + cos*v(n)
-         v(j) = tau
-c
-c        apply the transformation to s and extend the spike in w.
-c
-         l = jj
-         do 40 i = j, m
-            temp = cos*s(l) - sin*w(i)
-            w(i) = sin*s(l) + cos*w(i)
-            s(l) = temp
-            l = l + 1
-   40       continue
-   50    continue
-   60    continue
-   70 continue
-c
-c     add the spike from the rank 1 update to w.
-c
-      do 80 i = 1, m
-         w(i) = w(i) + v(n)*u(i)
-   80    continue
-c
-c     eliminate the spike.
-c
-      sing = .false.
-      if (nm1 .lt. 1) go to 140
-      do 130 j = 1, nm1
-         if (w(j) .eq. zero) go to 120
-c
-c        determine a givens rotation which eliminates the
-c        j-th element of the spike.
-c
-         if (dabs(s(jj)) .ge. dabs(w(j))) go to 90
-            cotan = s(jj)/w(j)
-            sin = p5/dsqrt(p25+p25*cotan**2)
-            cos = sin*cotan
-            tau = one
-            if (dabs(cos)*giant .gt. one) tau = one/cos
-            go to 100
-   90    continue
-            tan = w(j)/s(jj)
-            cos = p5/dsqrt(p25+p25*tan**2)
-            sin = cos*tan
-            tau = sin
-  100    continue
-c
-c        apply the transformation to s and reduce the spike in w.
-c
-         l = jj
-         do 110 i = j, m
-            temp = cos*s(l) + sin*w(i)
-            w(i) = -sin*s(l) + cos*w(i)
-            s(l) = temp
-            l = l + 1
-  110       continue
-c
-c        store the information necessary to recover the
-c        givens rotation.
-c
-         w(j) = tau
-  120    continue
-c
-c        test for zero diagonal elements in the output s.
-c
-         if (s(jj) .eq. zero) sing = .true.
-         jj = jj + (m - j + 1)
-  130    continue
-  140 continue
-c
-c     move w back into the last column of the output s.
-c
-      l = jj
-      do 150 i = n, m
-         s(l) = w(i)
-         l = l + 1
-  150    continue
-      if (s(jj) .eq. zero) sing = .true.
-      return
-c
-c     last card of subroutine r1updt.
-c
-      end
--- a/src/rwupdt.f
+++ /dev/null
@@ -1,113 +0,0 @@
-      subroutine rwupdt(n,r,ldr,w,b,alpha,cos,sin)
-      integer n,ldr
-      double precision alpha
-      double precision r(ldr,n),w(n),b(n),cos(n),sin(n)
-c     **********
-c
-c     subroutine rwupdt
-c
-c     given an n by n upper triangular matrix r, this subroutine
-c     computes the qr decomposition of the matrix formed when a row
-c     is added to r. if the row is specified by the vector w, then
-c     rwupdt determines an orthogonal matrix q such that when the
-c     n+1 by n matrix composed of r augmented by w is premultiplied
-c     by (q transpose), the resulting matrix is upper trapezoidal.
-c     the matrix (q transpose) is the product of n transformations
-c
-c           g(n)*g(n-1)* ... *g(1)
-c
-c     where g(i) is a givens rotation in the (i,n+1) plane which
-c     eliminates elements in the (n+1)-st plane. rwupdt also
-c     computes the product (q transpose)*c where c is the
-c     (n+1)-vector (b,alpha). q itself is not accumulated, rather
-c     the information to recover the g rotations is supplied.
-c
-c     the subroutine statement is
-c
-c       subroutine rwupdt(n,r,ldr,w,b,alpha,cos,sin)
-c
-c     where
-c
-c       n is a positive integer input variable set to the order of r.
-c
-c       r is an n by n array. on input the upper triangular part of
-c         r must contain the matrix to be updated. on output r
-c         contains the updated triangular matrix.
-c
-c       ldr is a positive integer input variable not less than n
-c         which specifies the leading dimension of the array r.
-c
-c       w is an input array of length n which must contain the row
-c         vector to be added to r.
-c
-c       b is an array of length n. on input b must contain the
-c         first n elements of the vector c. on output b contains
-c         the first n elements of the vector (q transpose)*c.
-c
-c       alpha is a variable. on input alpha must contain the
-c         (n+1)-st element of the vector c. on output alpha contains
-c         the (n+1)-st element of the vector (q transpose)*c.
-c
-c       cos is an output array of length n which contains the
-c         cosines of the transforming givens rotations.
-c
-c       sin is an output array of length n which contains the
-c         sines of the transforming givens rotations.
-c
-c     subprograms called
-c
-c       fortran-supplied ... dabs,dsqrt
-c
-c     argonne national laboratory. minpack project. march 1980.
-c     burton s. garbow, dudley v. goetschel, kenneth e. hillstrom,
-c     jorge j. more
-c
-c     **********
-      integer i,j,jm1
-      double precision cotan,one,p5,p25,rowj,tan,temp,zero
-      data one,p5,p25,zero /1.0d0,5.0d-1,2.5d-1,0.0d0/
-c
-      do 60 j = 1, n
-         rowj = w(j)
-         jm1 = j - 1
-c
-c        apply the previous transformations to
-c        r(i,j), i=1,2,...,j-1, and to w(j).
-c
-         if (jm1 .lt. 1) go to 20
-         do 10 i = 1, jm1
-            temp = cos(i)*r(i,j) + sin(i)*rowj
-            rowj = -sin(i)*r(i,j) + cos(i)*rowj
-            r(i,j) = temp
-   10       continue
-   20    continue
-c
-c        determine a givens rotation which eliminates w(j).
-c
-         cos(j) = one
-         sin(j) = zero
-         if (rowj .eq. zero) go to 50
-         if (dabs(r(j,j)) .ge. dabs(rowj)) go to 30
-            cotan = r(j,j)/rowj
-            sin(j) = p5/dsqrt(p25+p25*cotan**2)
-            cos(j) = sin(j)*cotan
-            go to 40
-   30    continue
-            tan = rowj/r(j,j)
-            cos(j) = p5/dsqrt(p25+p25*tan**2)
-            sin(j) = cos(j)*tan
-   40    continue
-c
-c        apply the current transformation to r(j,j), b(j), and alpha.
-c
-         r(j,j) = cos(j)*r(j,j) + sin(j)*rowj
-         temp = cos(j)*b(j) + sin(j)*alpha
-         alpha = -sin(j)*b(j) + cos(j)*alpha
-         b(j) = temp
-   50    continue
-   60    continue
-      return
-c
-c     last card of subroutine rwupdt.
-c
-      end
--- a/src/Makevars
+++ b/src/Makevars
@@ -1,2 +1,2 @@
-PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)  
+PKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) -lminpack