1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#' @export
makeRLearner.classif.xgboost = function() {
makeRLearnerClassif(
cl = "classif.xgboost",
package = "xgboost",
par.set = makeParamSet(
# we pass all of what goes in 'params' directly to ... of xgboost
# makeUntypedLearnerParam(id = "params", default = list()),
makeDiscreteLearnerParam(id = "booster", default = "gbtree", values = c("gbtree", "gblinear", "dart")),
makeUntypedLearnerParam(id = "watchlist", default = NULL, tunable = FALSE),
makeNumericLearnerParam(id = "eta", default = 0.3, lower = 0, upper = 1),
makeNumericLearnerParam(id = "gamma", default = 0, lower = 0),
makeIntegerLearnerParam(id = "max_depth", default = 6L, lower = 1L),
makeNumericLearnerParam(id = "min_child_weight", default = 1, lower = 0),
makeNumericLearnerParam(id = "subsample", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bytree", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bylevel", default = 1, lower = 0, upper = 1),
makeIntegerLearnerParam(id = "num_parallel_tree", default = 1L, lower = 1L),
makeNumericLearnerParam(id = "lambda", default = 1, lower = 0),
makeNumericLearnerParam(id = "lambda_bias", default = 0, lower = 0),
makeNumericLearnerParam(id = "alpha", default = 0, lower = 0),
makeUntypedLearnerParam(id = "objective", default = "binary:logistic", tunable = FALSE),
makeUntypedLearnerParam(id = "eval_metric", default = "error", tunable = FALSE),
makeNumericLearnerParam(id = "base_score", default = 0.5, tunable = FALSE),
makeNumericLearnerParam(id = "max_delta_step", lower = 0, default = 0),
makeNumericLearnerParam(id = "missing", default = NA, tunable = FALSE, when = "both",
special.vals = list(NA, NA_real_, NULL)),
makeIntegerVectorLearnerParam(id = "monotone_constraints", default = 0, lower = -1, upper = 1),
makeNumericLearnerParam(id = "tweedie_variance_power", lower = 1, upper = 2, default = 1.5, requires = quote(objective == "reg:tweedie")),
makeIntegerLearnerParam(id = "nthread", lower = 1L, tunable = FALSE),
makeIntegerLearnerParam(id = "nrounds", default = 1L, lower = 1L),
# FIXME nrounds seems to have no default in xgboost(), if it has 1, par.vals is redundant
makeUntypedLearnerParam(id = "feval", default = NULL, tunable = FALSE),
makeIntegerLearnerParam(id = "verbose", default = 1L, lower = 0L, upper = 2L, tunable = FALSE),
makeIntegerLearnerParam(id = "print_every_n", default = 1L, lower = 1L, tunable = FALSE,
requires = quote(verbose == 1L)),
makeIntegerLearnerParam(id = "early_stopping_rounds", default = NULL, lower = 1L, special.vals = list(NULL), tunable = FALSE),
makeLogicalLearnerParam(id = "maximize", default = NULL, special.vals = list(NULL), tunable = FALSE),
makeDiscreteLearnerParam(id = "sample_type", default = "uniform", values = c("uniform", "weighted"), requires = quote(booster == "dart")),
makeDiscreteLearnerParam(id = "normalize_type", default = "tree", values = c("tree", "forest"), requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "rate_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
# TODO: uncomment the following after the next CRAN update, and set max_depth's lower = 0L
#makeLogicalLearnerParam(id = "one_drop", default = FALSE, requires = quote(booster == "dart")),
#makeDiscreteLearnerParam(id = "tree_method", default = "exact", values = c("exact", "hist"), requires = quote(booster != "gblinear")),
#makeDiscreteLearnerParam(id = "grow_policy", default = "depthwise", values = c("depthwise", "lossguide"), requires = quote(tree_method == "hist")),
#makeIntegerLearnerParam(id = "max_leaves", default = 0L, lower = 0L, requires = quote(grow_policy == "lossguide")),
#makeIntegerLearnerParam(id = "max_bin", default = 256L, lower = 2L, requires = quote(tree_method == "hist")),
makeUntypedLearnerParam(id = "callbacks", default = list(), tunable = FALSE)
),
par.vals = list(nrounds = 1L, verbose = 0L),
properties = c("twoclass", "multiclass", "numerics", "prob", "weights", "missings", "featimp"),
name = "eXtreme Gradient Boosting",
short.name = "xgboost",
note = "All settings are passed directly, rather than through `xgboost`'s `params` argument. `nrounds` has been set to `1` and `verbose` to `0` by default. `num_class` is set internally, so do not set this manually.",
callees = "xgboost"
)
}
#' @export
trainLearner.classif.xgboost = function(.learner, .task, .subset, .weights = NULL, ...) {
td = getTaskDesc(.task)
parlist = list(...)
nc = length(td$class.levels)
if (is.null(parlist$objective))
parlist$objective = ifelse(nc == 2L, "binary:logistic", "multi:softprob")
if (.learner$predict.type == "prob" && parlist$objective == "multi:softmax")
stop("objective = 'multi:softmax' does not work with predict.type = 'prob'")
#if we use softprob or softmax as objective we have to add the number of classes 'num_class'
if (parlist$objective %in% c("multi:softprob", "multi:softmax"))
parlist$num_class = nc
task.data = getTaskData(.task, .subset, target.extra = TRUE)
label = match(as.character(task.data$target), td$class.levels) - 1
parlist$data = xgboost::xgb.DMatrix(data = data.matrix(task.data$data), label = label)
if (!is.null(.weights))
xgboost::setinfo(parlist$data, "weight", .weights)
if (is.null(parlist$watchlist))
parlist$watchlist = list(train = parlist$data)
do.call(xgboost::xgb.train, parlist)
}
#' @export
predictLearner.classif.xgboost = function(.learner, .model, .newdata, ...) {
td = .model$task.desc
m = .model$learner.model
cls = td$class.levels
nc = length(cls)
obj = .learner$par.vals$objective
if (is.null(obj))
.learner$par.vals$objective = ifelse(nc == 2L, "binary:logistic", "multi:softprob")
p = predict(m, newdata = data.matrix(.newdata), ...)
if (nc == 2L) { #binaryclass
if (.learner$par.vals$objective == "multi:softprob") {
y = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(y) = cls
} else {
y = matrix(0, ncol = 2, nrow = nrow(.newdata))
colnames(y) = cls
y[, 1L] = 1 - p
y[, 2L] = p
}
if (.learner$predict.type == "prob") {
return(y)
} else {
p = colnames(y)[max.col(y)]
names(p) = NULL
p = factor(p, levels = colnames(y))
return(p)
}
} else { #multiclass
if (.learner$par.vals$objective == "multi:softmax") {
p = as.factor(p) #special handling for multi:softmax which directly predicts class levels
levels(p) = cls
return(p)
} else {
p = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(p) = cls
if (.learner$predict.type == "prob") {
return(p)
} else {
ind = max.col(p)
cns = colnames(p)
return(factor(cns[ind], levels = cns))
}
}
}
}
#' @export
getFeatureImportanceLearner.classif.xgboost = function(.learner, .model, ...) {
mod = getLearnerModel(.model, more.unwrap = TRUE)
imp = xgboost::xgb.importance(feature_names = .model$features,
model = mod, ...)
fiv = imp$Gain
setNames(fiv, imp$Feature)
}
|