| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 
 | #' @export
makeRLearner.regr.rpart = function() {
  makeRLearnerRegr(
    cl = "regr.rpart",
    package = "rpart",
    par.set = makeParamSet(
      makeIntegerLearnerParam(id = "minsplit", default = 20L, lower = 1L),
      makeIntegerLearnerParam(id = "minbucket", lower = 1L),
      makeNumericLearnerParam(id = "cp", default = 0.01, lower = 0, upper = 1),
      makeIntegerLearnerParam(id = "maxcompete", default = 4L, lower = 0L),
      makeIntegerLearnerParam(id = "maxsurrogate", default = 5L, lower = 0L),
      makeDiscreteLearnerParam(id = "usesurrogate", default = 2L, values = 0:2),
      makeDiscreteLearnerParam(id = "surrogatestyle", default = 0L, values = 0:1),
      # we use 30 as upper limit, see docs of rpart.control
      makeIntegerLearnerParam(id = "maxdepth", default = 30L, lower = 1L, upper = 30L),
      makeIntegerLearnerParam(id = "xval", default = 10L, lower = 0L, tunable = FALSE)
    ),
    par.vals = list(xval = 0L),
    properties = c("missings", "numerics", "factors", "ordered", "weights", "featimp"),
    name = "Decision Tree",
    short.name = "rpart",
    note = "`xval` has been set to `0` by default for speed.",
    callees = c("rpart", "rpart.control")
  )
}
#' @export
trainLearner.regr.rpart = function(.learner, .task, .subset, .weights = NULL,  ...) {
  d = getTaskData(.task, .subset)
  if (is.null(.weights)) {
    f = getTaskFormula(.task)
    rpart::rpart(f, data = d, ...)
  } else  {
    f = getTaskFormula(.task)
    rpart::rpart(f, data = d, weights = .weights, ...)
  }
}
#' @export
predictLearner.regr.rpart = function(.learner, .model, .newdata, ...) {
  predict(.model$learner.model, newdata = .newdata, ...)
}
#' @export
getFeatureImportanceLearner.regr.rpart = function(.learner, .model, ...) {
  getFeatureImportanceLearner.classif.rpart(.learner, .model, ...)
}
 |