1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#' @title Aggregation methods.
#'
#' @description
#' \itemize{
#' \item{**test.mean**}{\cr Mean of performance values on test sets.}
#' \item{**test.sd**}{\cr Standard deviation of performance values on test sets.}
#' \item{**test.median**}{\cr Median of performance values on test sets.}
#' \item{**test.min**}{\cr Minimum of performance values on test sets.}
#' \item{**test.max**}{\cr Maximum of performance values on test sets.}
#' \item{**test.sum**}{\cr Sum of performance values on test sets.}
#' \item{**train.mean**}{\cr Mean of performance values on training sets.}
#' \item{**train.sd**}{\cr Standard deviation of performance values on training sets.}
#' \item{**train.median**}{\cr Median of performance values on training sets.}
#' \item{**train.min**}{\cr Minimum of performance values on training sets.}
#' \item{**train.max**}{\cr Maximum of performance values on training sets.}
#' \item{**train.sum**}{\cr Sum of performance values on training sets.}
#' \item{**b632**}{\cr Aggregation for B632 bootstrap.}
#' \item{**b632plus**}{\cr Aggregation for B632+ bootstrap.}
#' \item{**testgroup.mean**}{\cr Performance values on test sets are grouped according
#' to resampling method. The mean for every group is calculated, then the mean of those means.
#' Mainly used for repeated CV.}
#' \item{**testgroup.sd**}{\cr Similar to **testgroup.mean** - after
#' the mean for every group is calculated, the standard deviation of those means is obtained.
#' Mainly used for repeated CV.}
#' \item{**test.join**}{\cr Performance measure on joined test sets.
#' This is especially useful for small sample sizes where unbalanced group sizes have a significant impact
#' on the aggregation, especially for cross-validation test.join might make sense now.
#' For the repeated CV, the performance is calculated on each repetition and then aggregated
#' with the arithmetic mean.}
#' }
#' @format None
#' @seealso [Aggregation]
#' @name aggregations
#' @rdname aggregations
NULL
#' @export
#' @rdname aggregations
test.mean = makeAggregation(
id = "test.mean",
name = "Test mean",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) mean(perf.test)
)
#' @export
#' @rdname aggregations
test.sd = makeAggregation(
id = "test.sd",
name = "Test sd",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) sd(perf.test)
)
#' @export
#' @rdname aggregations
test.median = makeAggregation(
id = "test.median",
name = "Test median",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) median(perf.test)
)
#' @export
#' @rdname aggregations
test.min = makeAggregation(
id = "test.min",
name = "Test minimum",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) min(perf.test)
)
#' @export
#' @rdname aggregations
test.max = makeAggregation(
id = "test.max",
name = "Test maximum",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) max(perf.test)
)
#' @export
#' @rdname aggregations
test.sum = makeAggregation(
id = "test.sum",
name = "Test sum",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) sum(perf.test)
)
#' @export
#' @rdname aggregations
test.range = makeAggregation(
id = "test.range",
name = "Test range",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) diff(range(perf.test))
)
#' @export
#' @rdname aggregations
test.rmse = makeAggregation(
id = "test.rmse",
name = "Test RMSE",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) sqrt(mean(perf.test^2))
)
#' @export
#' @rdname aggregations
train.mean = makeAggregation(
id = "train.mean",
name = "Training mean",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) mean(perf.train)
)
#' @export
#' @rdname aggregations
train.sd = makeAggregation(
id = "train.sd",
name = "Training sd",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) sd(perf.train)
)
#' @export
#' @rdname aggregations
train.median = makeAggregation(
id = "train.median",
name = "Training median",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) median(perf.train)
)
#' @export
#' @rdname aggregations
train.min = makeAggregation(
id = "train.min",
name = "Training min",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) min(perf.train)
)
#' @export
#' @rdname aggregations
train.max = makeAggregation(
id = "train.max",
name = "Training max",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) max(perf.train)
)
#' @export
#' @rdname aggregations
train.sum = makeAggregation(
id = "train.sum",
name = "Training sum",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) sum(perf.train)
)
#' @export
#' @rdname aggregations
train.range = makeAggregation(
id = "train.range",
name = "Training range",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) diff(range(perf.train))
)
#' @export
#' @rdname aggregations
train.rmse = makeAggregation(
id = "train.rmse",
name = "Training RMSE",
properties = "req.train",
fun = function(task, perf.test, perf.train, measure, group, pred) sqrt(mean(perf.train^2))
)
#' @export
#' @rdname aggregations
b632 = makeAggregation(
id = "b632",
name = ".632 Bootstrap",
properties = c("req.train", "req.test"),
fun = function(task, perf.test, perf.train, measure, group, pred) {
mean(0.632 * perf.test + 0.368 * perf.train)
}
)
#FIXME: read this again properly and double check it
#' @export
#' @rdname aggregations
b632plus = makeAggregation(
id = "b632plus",
name = ".632 Bootstrap plus",
properties = c("req.train", "req.test"),
fun = function(task, perf.test, perf.train, measure, group, pred) {
df = as.data.frame(pred)
a = numeric(length(perf.test))
for (i in seq_along(a)) {
df2 = df[df$iter == i, , drop = FALSE]
y1 = df2$truth
y2 = df2$response
grid = expand.grid(y1, y2, KEEP.OUT.ATTRS = FALSE)
pred2 = makePrediction(task.desc = pred$task.desc, row.names = rownames(grid),
id = NULL, truth = grid[, 1L], predict.type = "response", y = grid[, 2L],
time = NA_real_)
gamma = performance(pred2, measures = measure)
R = (perf.test[i] - perf.train[i]) / (gamma - perf.train[i])
w = 0.632 / (1 - 0.368 * R)
a[i] = (1 - w) * perf.train[i] + w * perf.test[i]
}
return(mean(a))
}
)
#' @export
#' @rdname aggregations
testgroup.mean = makeAggregation(
id = "testgroup.mean",
name = "Test group mean",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) {
mean(vnapply(split(perf.test, group), mean))
}
)
#' @export
#' @rdname aggregations
testgroup.sd = makeAggregation(
id = "testgroup.sd",
name = "Test group standard deviation",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) {
sd(BBmisc::vnapply(split(perf.test, group), mean))
}
)
#' @export
#' @rdname aggregations
test.join = makeAggregation(
id = "test.join",
name = "Test join",
properties = "req.test",
fun = function(task, perf.test, perf.train, measure, group, pred) {
df = as.data.frame(pred)
f = if (length(group)) group[df$iter] else factor(rep(1L, nrow(df)))
mean(vnapply(split(df, f), function(df) {
if (pred$predict.type == "response") y = df$response
if (pred$predict.type == "prob") {
y = df[, stri_startswith_fixed(colnames(df), "prob."), drop = FALSE]
colnames(y) = stri_sub(colnames(y), 6L)
}
npred = makePrediction(task.desc = pred$task.desc, row.names = rownames(df),
id = NULL, truth = df$truth, predict.type = pred$predict.type, y = y,
time = NA_real_)
performance(npred, measure)
}))
}
)
|