1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#' @title Calculates feature filter values.
#'
#' @description
#' Calculates numerical filter values for features.
#' For a list of features, use [listFilterMethods].
#'
#' @template arg_task
#' @param method ([character])\cr
#' Filter method(s), see above.
#' Default is \dQuote{randomForestSRC.rfsrc}.
#' @param nselect (`integer(1)`)\cr
#' Number of scores to request. Scores are getting calculated for all features per default.
#' @param ... (any)\cr
#' Passed down to selected method. Can only be use if `method` contains one element.
#' @param more.args (named [list])\cr
#' Extra args passed down to filter methods. List elements are named with the filter
#' `method` name the args should be passed down to.
#' A more general and flexible option than `...`.
#' Default is empty list.
#' @return ([FilterValues]). A `list` containing:
#' \item{task.desc}{[[TaskDesc])\cr
#' Task description.}
#' \item{data}{([data.frame]) with columns:
#' \itemize{
#' \item `name`([character])\cr
#' Name of feature.
#' \item `type`([character])\cr
#' Feature column type.
#' \item `method`([numeric])\cr
#' One column for each method with the feature importance values.
#' }}
#' @family generate_plot_data
#' @family filter
#' @aliases FilterValues
#' @export
generateFilterValuesData = function(task, method = "randomForestSRC.rfsrc", nselect = getTaskNFeats(task), ..., more.args = list()) {
assert(checkClass(task, "ClassifTask"), checkClass(task, "RegrTask"), checkClass(task, "SurvTask"))
assertSubset(method, choices = ls(.FilterRegister), empty.ok = FALSE)
td = getTaskDesc(task)
filter = lapply(method, function(x) .FilterRegister[[x]])
if (!(any(sapply(filter, function(x) !isScalarNA(filter$pkg)))))
lapply(filter, function(x) requirePackages(x$pkg, why = "generateFilterValuesData", default.method = "load"))
check.task = sapply(filter, function(x) td$type %nin% x$supported.tasks)
if (any(check.task))
stopf("Filter(s) %s not compatible with task of type '%s'",
stri_paste("'", method[check.task], "'", collapse = ", "), td$type)
check.feat = lapply(filter, function(x) setdiff(names(td$n.feat[td$n.feat > 0L]), x$supported.features))
check.length = sapply(check.feat, length) > 0L
if (any(check.length)) {
stopf("Filter(s) %s not compatible with features of type %s respectively",
stri_paste("'", method[check.length], "'", collapse = ", "),
stri_paste(sapply(check.feat[check.length], function(x) stri_paste("'", x, "'", collapse = ", ")), collapse = ", and "))
}
assertCount(nselect)
assertList(more.args, names = "unique", max.len = length(method))
assertSubset(names(more.args), method)
dot.args = list(...)
if (length(dot.args) > 0L && length(more.args) > 0L)
stopf("Do not use both 'more.args' and '...' here!")
# we have dot.args, so we cannot have more.args. either complain (> 1 method) or
# auto-setup more.args as list
if (length(dot.args) > 0L) {
if (length(method) == 1L)
more.args = namedList(method, dot.args)
else
stopf("You use more than 1 filter method. Please pass extra arguments via 'more.args' and not '...' to filter methods!")
}
fn = getTaskFeatureNames(task)
fval = lapply(filter, function(x) {
x = do.call(x$fun, c(list(task = task, nselect = nselect), more.args[[x$name]]))
missing.score = setdiff(fn, names(x))
x[missing.score] = NA_real_
x[match(fn, names(x))]
})
fval = do.call(cbind, fval)
colnames(fval) = method
types = vcapply(getTaskData(task, target.extra = TRUE)$data[fn], getClass1)
out = data.frame(name = row.names(fval),
type = types,
fval, row.names = NULL, stringsAsFactors = FALSE)
makeS3Obj("FilterValues",
task.desc = td,
data = out)
}
#' @export
print.FilterValues = function(x, ...) {
catf("FilterValues:")
catf("Task: %s", x$task.desc$id)
printHead(x$data, ...)
}
#' @title Calculates feature filter values.
#'
#' @family filter
#' @family generate_plot_data
#'
#' @description
#' Calculates numerical filter values for features.
#' For a list of features, use [listFilterMethods].
#'
#' @template arg_task
#' @param method (`character(1)`)\cr
#' Filter method, see above.
#' Default is \dQuote{randomForestSRC.rfsrc}.
#' @param nselect (`integer(1)`)\cr
#' Number of scores to request. Scores are getting calculated for all features per default.
#' @param ... (any)\cr
#' Passed down to selected method.
#' @return ([FilterValues]).
#' @note `getFilterValues` is deprecated in favor of [generateFilterValuesData].
#' @family filter
#' @export
getFilterValues = function(task, method = "randomForestSRC.rfsrc", nselect = getTaskNFeats(task), ...) {
.Deprecated("generateFilterValuesData")
assertChoice(method, choices = ls(.FilterRegister))
out = generateFilterValuesData(task, method, nselect, ...)
colnames(out$data)[3] = "val"
out$data = out$data[, c(1, 3, 2)]
makeS3Obj("FilterValues",
task.desc = out$task.desc,
method = method,
data = out$data)
}
#' Plot filter values using ggplot2.
#'
#' @family filter
#' @family generate_plot_data
#'
#' @param fvalues ([FilterValues])\cr
#' Filter values.
#' @param sort (`character(1)`)\cr
#' Sort features like this.
#' \dQuote{dec} = decreasing, \dQuote{inc} = increasing, \dQuote{none} = no sorting.
#' Default is decreasing.
#' @param n.show (`integer(1)`)\cr
#' Number of features (maximal) to show.
#' Default is 20.
#' @param feat.type.cols (`logical(1)`)\cr
#' Colors for factor and numeric features.
#' `FALSE` means no colors.
#' Default is `FALSE`.
#' @template arg_facet_nrow_ncol
#' @template ret_gg2
#' @export
#' @examples
#' fv = generateFilterValuesData(iris.task, method = "variance")
#' plotFilterValues(fv)
plotFilterValues = function(fvalues, sort = "dec", n.show = 20L, feat.type.cols = FALSE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL) {
assertClass(fvalues, classes = "FilterValues")
assertChoice(sort, choices = c("dec", "inc", "none"))
if (!(is.null(fvalues$method)))
stop("fvalues must be generated by generateFilterValuesData, not getFilterValues, which is deprecated.")
n.show = asCount(n.show)
data = fvalues$data
methods = colnames(data[, -which(colnames(data) %in% c("name", "type")), drop = FALSE])
n.show = min(n.show, max(sapply(methods, function(x) sum(!is.na(data[[x]])))))
data = melt(as.data.table(data), id.vars = c("name", "type"), variable = "method")
if (sort != "none") {
sort.mult = if (sort == "inc") 1 else -1
setorderv(data, "value", sort.mult)
data = data[get("method") %in% methods, head(.SD, n.show), by = "method"]
}
data$name = factor(data$name, levels = as.character(unique(data$name)))
if (feat.type.cols)
mp = aes_string(x = "name", y = "value", fill = "type")
else
mp = aes_string(x = "name", y = "value")
plt = ggplot(data = data, mapping = mp)
plt = plt + geom_bar(position = "identity", stat = "identity")
if (length(unique(data$method)) > 1L) {
plt = plt + facet_wrap(~ method, scales = "free_y",
nrow = facet.wrap.nrow, ncol = facet.wrap.ncol)
plt = plt + labs(title = sprintf("%s (%i features)",
fvalues$task.desc$id,
sum(fvalues$task.desc$n.feat)),
x = "", y = "")
} else {
plt = plt + labs(title = sprintf("%s (%i features), filter = %s",
fvalues$task.desc$id,
sum(fvalues$task.desc$n.feat),
methods),
x = "", y = "")
}
plt = plt + theme(axis.text.x = element_text(angle = 45, hjust = 1))
return(plt)
}
|