File: getFeatureImportanceLearner.Rd

package info (click to toggle)
r-cran-mlr 2.18.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,088 kB
  • sloc: ansic: 65; sh: 13; makefile: 2
file content (34 lines) | stat: -rw-r--r-- 1,233 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RLearner_regr_randomForestSRC.R,
%   R/getFeatureImportance.R
\name{getFeatureImportanceLearner.regr.randomForestSRC}
\alias{getFeatureImportanceLearner.regr.randomForestSRC}
\alias{getFeatureImportanceLearner}
\title{Calculates feature importance values for a given learner.}
\usage{
\method{getFeatureImportanceLearner}{regr.randomForestSRC}(.learner, .model, ...)

getFeatureImportanceLearner(.learner, .model, ...)
}
\arguments{
\item{.learner}{(\link{Learner} | \code{character(1)})\cr
The learner.}

\item{.model}{(\link{WrappedModel})\cr
The model.}

\item{...}{(any)\cr
Additional parameters, which are passed to the underlying importance value
generating function.}
}
\value{
(\link{numeric}) A named vector of variable importance.
}
\description{
This function is mostly for internal usage. To calculate feature importance use \link{getFeatureImportance}.

The return value is a named numeric vector. There does not need to be one value for each feature in the dataset.
In \link{getFeatureImportance} missing features will get an importance of zero and if the vector contains \code{NA}
they will also be replaced with zero.
}
\keyword{internal}