1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/TuneControlMBO.R
\name{makeTuneControlMBO}
\alias{makeTuneControlMBO}
\alias{TuneControlMBO}
\title{Create control object for hyperparameter tuning with MBO.}
\usage{
makeTuneControlMBO(
same.resampling.instance = TRUE,
impute.val = NULL,
learner = NULL,
mbo.control = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
continue = FALSE,
log.fun = "default",
final.dw.perc = NULL,
budget = NULL,
mbo.design = NULL
)
}
\arguments{
\item{same.resampling.instance}{(\code{logical(1)})\cr
Should the same resampling instance be used for all evaluations to reduce variance?
Default is \code{TRUE}.}
\item{impute.val}{(\link{numeric})\cr
If something goes wrong during optimization (e.g. the learner crashes),
this value is fed back to the tuner, so the tuning algorithm does not abort.
It is not stored in the optimization path, an NA and a corresponding error message are
logged instead.
Note that this value is later multiplied by -1 for maximization measures internally, so you
need to enter a larger positive value for maximization here as well.
Default is the worst obtainable value of the performance measure you optimize for when
you aggregate by mean value, or \code{Inf} instead.
For multi-criteria optimization pass a vector of imputation values, one for each of your measures,
in the same order as your measures.}
\item{learner}{(\link{Learner} | \code{NULL})\cr
The surrogate learner: A regression learner to model performance landscape.
For the default, \code{NULL}, \pkg{mlrMBO} will automatically create a suitable learner based on the rules described in \link[mlrMBO:makeMBOLearner]{mlrMBO::makeMBOLearner}.}
\item{mbo.control}{(\link[mlrMBO:makeMBOControl]{mlrMBO::MBOControl} | \code{NULL})\cr
Control object for model-based optimization tuning.
For the default, \code{NULL}, the control object will be created with all the defaults as described in \link[mlrMBO:makeMBOControl]{mlrMBO::makeMBOControl}.}
\item{tune.threshold}{(\code{logical(1)})\cr
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation,
via \link{tuneThreshold}?
Only works for classification if the predict type is \dQuote{prob}.
Default is \code{FALSE}.}
\item{tune.threshold.args}{(\link{list})\cr
Further arguments for threshold tuning that are passed down to \link{tuneThreshold}.
Default is none.}
\item{continue}{(\code{logical(1)})\cr
Resume calculation from previous run using \link[mlrMBO:mboContinue]{mlrMBO::mboContinue}?
Requires \dQuote{save.file.path} to be set.
Note that the \link[ParamHelpers:OptPath]{ParamHelpers::OptPath} in the \link[mlrMBO:OptResult]{mlrMBO::OptResult}
will only include the evaluations after the continuation.
The complete \link{OptPath} will be found in the slot \verb{$mbo.result$opt.path}.}
\item{log.fun}{(\code{function} | \code{character(1)})\cr
Function used for logging. If set to \dQuote{default} (the default), the evaluated design points, the resulting
performances, and the runtime will be reported.
If set to \dQuote{memory} the memory usage for each evaluation will also be displayed, with \code{character(1)} small increase
in run time.
Otherwise \code{character(1)} function with arguments \code{learner}, \code{resampling}, \code{measures},
\code{par.set}, \code{control}, \code{opt.path}, \code{dob}, \code{x}, \code{y}, \code{remove.nas},
\code{stage} and \code{prev.stage} is expected.
The default displays the performance measures, the time needed for evaluating,
the currently used memory and the max memory ever used before
(the latter two both taken from \link{gc}).
See the implementation for details.}
\item{final.dw.perc}{(\code{boolean})\cr
If a Learner wrapped by a \link{makeDownsampleWrapper} is used, you can define the value of \code{dw.perc} which is used to train the Learner with the final parameter setting found by the tuning.
Default is \code{NULL} which will not change anything.}
\item{budget}{(\code{integer(1)})\cr
Maximum budget for tuning. This value restricts the number of function evaluations.}
\item{mbo.design}{(\link{data.frame} | \code{NULL})\cr
Initial design as data frame.
If the parameters have corresponding trafo functions,
the design must not be transformed before it is passed!
For the default, \code{NULL}, a default design is created like described in \link[mlrMBO:mbo]{mlrMBO::mbo}.}
}
\value{
(\link{TuneControlMBO})
}
\description{
Model-based / Bayesian optimization with the function
\link[mlrMBO:mbo]{mlrMBO::mbo} from the \pkg{mlrMBO} package.
Please refer to \url{https://github.com/mlr-org/mlrMBO} for further info.
}
\references{
Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas and Michel Lang; mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions, Preprint: \url{https://arxiv.org/abs/1703.03373} (2017).
}
\seealso{
Other tune:
\code{\link{TuneControl}},
\code{\link{getNestedTuneResultsOptPathDf}()},
\code{\link{getNestedTuneResultsX}()},
\code{\link{getResamplingIndices}()},
\code{\link{getTuneResult}()},
\code{\link{makeModelMultiplexerParamSet}()},
\code{\link{makeModelMultiplexer}()},
\code{\link{makeTuneControlCMAES}()},
\code{\link{makeTuneControlDesign}()},
\code{\link{makeTuneControlGenSA}()},
\code{\link{makeTuneControlGrid}()},
\code{\link{makeTuneControlIrace}()},
\code{\link{makeTuneControlRandom}()},
\code{\link{makeTuneWrapper}()},
\code{\link{tuneParams}()},
\code{\link{tuneThreshold}()}
}
\concept{tune}
|