File: test_base_resample_b632.R

package info (click to toggle)
r-cran-mlr 2.18.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,088 kB
  • sloc: ansic: 65; sh: 13; makefile: 2
file content (19 lines) | stat: -rw-r--r-- 830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
context("resample_b632")

test_that("b632", {
  res = makeResampleDesc("Bootstrap", iters = 2, predict = "both")
  m = setAggregation(mmce, b632)
  r = resample(makeLearner("classif.rpart"), task = binaryclass.task,
    resampling = res, measure = m)
  m1 = r$measures.train
  m2 = r$measures.test
  p = as.data.frame(r$pred)
  ls11 = p[p$set == "train" & p$iter == 1, c("truth", "response")]
  ls12 = p[p$set == "test" & p$iter == 1, c("truth", "response")]
  ls1 = 0.368 * mean(ls11[, 1] != ls11[, 2]) + 0.632 * mean(ls12[, 1] != ls12[, 2])
  ls21 = p[p$set == "train" & p$iter == 2, c("truth", "response")]
  ls22 = p[p$set == "test" & p$iter == 2, c("truth", "response")]
  ls2 = 0.368 * mean(ls21[, 1] != ls21[, 2]) + 0.632 * mean(ls22[, 1] != ls22[, 2])
  ag = r$aggr
  expect_equal(mean(c(ls1, ls2)), ag[["mmce.b632"]])
})