File: test_classif_logreg.R

package info (click to toggle)
r-cran-mlr 2.18.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,088 kB
  • sloc: ansic: 65; sh: 13; makefile: 2
file content (25 lines) | stat: -rw-r--r-- 858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
context("classif_logreg")

test_that("classif_logreg", {
  # "did not converge":
  m = glm(formula = binaryclass.formula, data = binaryclass.train, family = binomial)

  p = predict(m, newdata = binaryclass.test, type = "response")
  p.prob = 1 - p
  p.class = as.factor(binaryclass.class.levs[ifelse(p > 0.5, 2, 1)])

  testSimple("classif.logreg", binaryclass.df, binaryclass.target, binaryclass.train.inds, p.class)


  testProb("classif.logreg", binaryclass.df, binaryclass.target, binaryclass.train.inds, p.prob)

  tt = function(formula, data) {
    glm(formula, data = data, family = binomial)
  }
  tp = function(model, newdata) {
    p = predict(model, newdata, type = "response")
    as.factor(binaryclass.class.levs[ifelse(p > 0.5, 2, 1)])
  }

  testCV("classif.logreg", binaryclass.df, binaryclass.target, tune.train = tt, tune.predict = tp)
})