1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# this is a long test suite that is used to test the validity of ALL filters
context("filterFeatures")
cat("filters")
test_that("filterFeatures 1", {
# FSelector not avail
skip_on_os("windows")
# Loop through all filters
# univariate.model.score, permutation.importance and auc are handled extra test below
# 'univariate', 'randomForest_importance' and 'rfsrc_var.select' are deprecated
filter.list = listFilterMethods(desc = FALSE, tasks = TRUE, features = FALSE)
filter.list.classif = as.character(filter.list$id)[filter.list$task.classif]
filter.list.classif = setdiff(filter.list.classif, c(
"univariate.model.score", "permutation.importance", "auc",
"univariate", "randomForest_importance", "randomForestSRC_var.select"))
for (filter in filter.list.classif) {
filterFeatures(task = multiclass.task, method = filter, perc = 0.5)
}
filter.list.regr = as.character(filter.list$id)[!filter.list$task.classif &
filter.list$task.regr]
for (filter in filter.list.regr) {
filterFeatures(task = regr.num.task, method = filter, perc = 0.5)
}
fv = generateFilterValuesData(task = multiclass.task,
method = "univariate.model.score", perc = -1.5,
perf.learner = makeLearner("classif.rpart"), measures = mmce)
expect_class(fv, classes = "FilterValues")
expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
len = getTaskNFeats(multiclass.task))
})
test_that("filterFeatures - permutation imp", {
# extra test of the permutation.importance filter
fv = generateFilterValuesData(task = multiclass.task,
method = "permutation.importance",
imp.learner = makeLearner("classif.rpart"),
measure = acc,
contrast = function(x, y) abs(x - y),
aggregation = median,
nmc = 2L)
expect_class(fv, classes = "FilterValues")
expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
len = getTaskNFeats(multiclass.task))
})
test_that("filterFeatures: auc", {
# extra test for auc filter (two class dataset)
toy.data = data.frame(
Class = factor(c(1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L)),
V1 = 1:8,
V2 = 8:1,
V3 = c(5L, 1L, 6L, 7L, 2L, 8L, 3L, 4L),
V4 = c(1L, 5L, 2L, 3L, 6L, 4L, 7L, 8L),
V5 = c(1L, 2L, 3L, 5L, 4L, 7L, 6L, 8L))
toy.task = makeClassifTask("toy.task", data = toy.data, target = "Class",
positive = 1L)
fv = generateFilterValuesData(toy.task, method = "auc")
expect_class(fv, classes = "FilterValues")
expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
len = getTaskNFeats(toy.task))
expect_equal(fv$data$value, c(0.25, 0.25, 0.5, 0.5, 0.125))
})
test_that("randomForestSRC_var.select filter handles user choices correctly", {
expect_silent(
suppressWarnings(generateFilterValuesData(task = multiclass.task,
method = "randomForestSRC_var.select",
more.args = list("randomForestSRC_var.select" = c(method = "vh",
conservative = "high", fast = TRUE))))
)
# method = "vh.imp" is not supported
expect_error(
fv = suppressWarnings(generateFilterValuesData(task = multiclass.task,
method = "randomForestSRC_var.select",
more.args = list("randomForestSRC_var.select" = c(method = "vh.imp"))))
)
})
test_that("Custom threshold function for filtering works correctly", {
biggest_gap = function(values, diff) {
gap_size = 0
gap_location = 0
for (i in (diff + 1):length(values)) {
gap = values[[i - diff]] - values[[i]]
if (gap > gap_size) {
gap_size = gap
gap_location = i - 1
}
}
return(gap_location)
}
ftask = filterFeatures(task = multiclass.task,
method = "variance",
fun = biggest_gap,
fun.args = list("diff" = 1)
)
feats = getTaskFeatureNames(ftask)
expect_equal(feats, c("Petal.Length"))
})
test_that("randomForestSRC_var.select minimal depth filter returns NA for features below the threshold", {
dat = generateFilterValuesData(task = multiclass.task,
method = "randomForestSRC_var.select",
nselect = 5,
more.args = list(method = "md", nrep = 5))
expect_equal(all(is.na(dat$data$value[dat$data$name %in% c("Sepal.Length", "Sepal.Width")])), TRUE)
expect_equal(all(is.na(dat$data$value[dat$data$name %in% c("Petal.Length", "Petal.Width")])), FALSE)
})
test_that("ensemble filters subset the task correctly", {
# expectation for all filters was checked manually just right after the
# internal aggregation (in filterFeatures.R)
task.filtered = filterFeatures(bh.task,
method = "E-mean",
abs = 5,
base.methods = c("univariate.model.score", "praznik_CMIM"))
expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
"ptratio", "lstat"))
task.filtered = filterFeatures(bh.task,
method = "E-min",
abs = 5,
base.methods = c("univariate.model.score", "praznik_CMIM"))
expect_equal(getTaskFeatureNames(task.filtered), c("nox", "rm", "tax",
"ptratio", "lstat"))
task.filtered = filterFeatures(bh.task,
method = "E-max",
abs = 5,
base.methods = c("univariate.model.score", "praznik_CMIM"))
expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
"ptratio", "lstat"))
task.filtered = filterFeatures(bh.task,
method = "E-median",
abs = 5,
base.methods = c("univariate.model.score", "praznik_CMIM"))
expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
"ptratio", "lstat"))
task.filtered = filterFeatures(bh.task,
method = "E-Borda",
abs = 5,
base.methods = c("univariate.model.score", "praznik_CMIM"))
expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
"ptratio", "lstat"))
})
test_that("Thresholding works with ensemble filters", {
foo = filterFeatures(iris.task, method = "E-min",
base.methods = c("FSelectorRcpp_gain.ratio",
"FSelectorRcpp_information.gain"),
thresh = 2)
expect_equal(getTaskNFeats(foo), 3)
})
test_that("Ensemble filters can deal with non-unique base methods", {
lda = makeLearner(cl = "classif.lda", id = "lda_class", predict.type = "response")
ff = filterFeatures(multiclass.task,
method = "E-mean",
base.methods = list("filter1" = "univariate.model.score", "filter2" = "univariate.model.score"),
abs = 2,
more.args = list("filter1" = list(perf.learner = lda), "filter2" = list(perf.learner = lda))
)
expect_equal(getTaskFeatureNames(ff), c("Petal.Length", "Petal.Width"))
})
|