File: helper_mock_learners.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (167 lines) | stat: -rwxr-xr-x 6,811 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# learner with error "foo" in predict
makeRLearner.classif.__mlrmocklearners__1 = function() {
  # nolint
  makeRLearnerClassif(
    cl = "classif.__mlrmocklearners__1", package = character(0L), par.set = makeParamSet(),
    properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
  )
}
trainLearner.classif.__mlrmocklearners__1 = function(.learner, .task, .subset, .weights = NULL, ...) list() # nolint
predictLearner.classif.__mlrmocklearners__1 = function(.learner, .model, .newdata, ...) stop("foo") # nolint
registerS3method("makeRLearner", "classif.__mlrmocklearners__1", makeRLearner.classif.__mlrmocklearners__1)
registerS3method("trainLearner", "classif.__mlrmocklearners__1", trainLearner.classif.__mlrmocklearners__1)
registerS3method("predictLearner", "classif.__mlrmocklearners__1", predictLearner.classif.__mlrmocklearners__1)

# for tuning, produces errors en masse
makeRLearner.classif.__mlrmocklearners__2 = function() {
  # nolint
  # nolint
  makeRLearnerClassif(
    cl = "classif.__mlrmocklearners__2", package = character(0L),
    par.set = makeParamSet(
      makeNumericLearnerParam("alpha", lower = 0, upper = 1)
    ),
    properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
  )
}
trainLearner.classif.__mlrmocklearners__2 = function(.learner, .task, .subset, .weights = NULL, alpha, ...) {
  # nolint
  if (alpha < 0.5) {
    stop("foo")
  }
  list()
}
predictLearner.classif.__mlrmocklearners__2 = function(.learner, .model, .newdata, ...) {
  # nolint
  as.factor(sample(.model$task.desc$class.levels, nrow(.newdata), replace = TRUE))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__2", makeRLearner.classif.__mlrmocklearners__2)
registerS3method("trainLearner", "classif.__mlrmocklearners__2", trainLearner.classif.__mlrmocklearners__2)
registerS3method("predictLearner", "classif.__mlrmocklearners__2", predictLearner.classif.__mlrmocklearners__2)


# learner with error "foo" in train
makeRLearner.classif.__mlrmocklearners__3 = function() {
  # nolint

  makeRLearnerClassif(
    cl = "classif.__mlrmocklearners__3", package = character(0L), par.set = makeParamSet(),
    properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
  )
}
trainLearner.classif.__mlrmocklearners__3 = function(.learner, .task, .subset, .weights = NULL, ...) stop("foo") # nolint
predictLearner.classif.__mlrmocklearners__3 = function(.learner, .model, .newdata, ...) 1L # nolint
registerS3method("makeRLearner", "classif.__mlrmocklearners__3", makeRLearner.classif.__mlrmocklearners__3)
registerS3method("trainLearner", "classif.__mlrmocklearners__3", trainLearner.classif.__mlrmocklearners__3)
registerS3method("predictLearner", "classif.__mlrmocklearners__3", predictLearner.classif.__mlrmocklearners__3)

# learner with different "when" settings for hyperpars
makeRLearner.regr.__mlrmocklearners__4 = function() {
  # nolint

  makeRLearnerRegr(
    cl = "regr.__mlrmocklearners__4", package = character(0L),
    par.set = makeParamSet(
      makeNumericLearnerParam("p1", when = "train"),
      makeNumericLearnerParam("p2", when = "predict"),
      makeNumericLearnerParam("p3", when = "both")
    ),
    properties = c("missings", "numerics", "factors")
  )
}

trainLearner.regr.__mlrmocklearners__4 = function(.learner, .task, .subset, .weights = NULL, p1, p3, ...) {
  # nolint

  list(foo = p1 + p3)
}

predictLearner.regr.__mlrmocklearners__4 = function(.learner, .model, .newdata, p2, p3) {
  # nolint

  y = rep(1, nrow(.newdata))
  y * .model$learner.model$foo + p2 + p3
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__4", makeRLearner.regr.__mlrmocklearners__4)
registerS3method("trainLearner", "regr.__mlrmocklearners__4", trainLearner.regr.__mlrmocklearners__4)
registerS3method("predictLearner", "regr.__mlrmocklearners__4", predictLearner.regr.__mlrmocklearners__4)


# Learner cannot use expression in param requires
makeRLearner.classif.__mlrmocklearners__5 = function() {
  # nolint

  makeRLearnerClassif(
    cl = "classif.__mlrmocklearners__5",
    package = "mlr",
    par.set = makeParamSet(
      makeDiscreteLearnerParam(id = "a", values = c("x", "y")),
      makeNumericLearnerParam(id = "b", lower = 0.0, upper = 1.0, requires = expression(a == "x"))
    ),
    properties = c("twoclass", "multiclass", "numerics", "factors", "prob")
  )
}

trainLearner.classif.__mlrmocklearners__5 = function(.learner, .task, .subset, .weights = NULL, ...) {
  # nolint
}

predictLearner.classif.__mlrmocklearners__5 = function(.learner, .model, .newdata) {
  # nolint

  rep(factor(.model$factor.levels[[.model$task.desc$target]][1]), nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__5", makeRLearner.classif.__mlrmocklearners__5)
registerS3method("trainLearner", "classif.__mlrmocklearners__5", trainLearner.classif.__mlrmocklearners__5)
registerS3method("predictLearner", "classif.__mlrmocklearners__5", predictLearner.classif.__mlrmocklearners__5)

# stores weights internally so we can see wether they are correctly passed down
makeRLearner.regr.__mlrmocklearners__6 = function() {
  # nolint

  makeRLearnerRegr(
    cl = "regr.__mlrmocklearners__6", package = character(0L),
    par.set = makeParamSet(),
    properties = c("missings", "numerics", "factors", "weights")
  )
}

trainLearner.regr.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
  # nolint

  list(weights = .weights)
}

predictLearner.regr.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
  # nolint

  rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__6", makeRLearner.regr.__mlrmocklearners__6)
registerS3method("trainLearner", "regr.__mlrmocklearners__6", trainLearner.regr.__mlrmocklearners__6)
registerS3method("predictLearner", "regr.__mlrmocklearners__6", predictLearner.regr.__mlrmocklearners__6)

makeRLearner.classif.__mlrmocklearners__6 = function() {
  # nolint

  makeRLearnerClassif(
    cl = "classif.__mlrmocklearners__6", package = character(0L),
    par.set = makeParamSet(),
    properties = c("missings", "numerics", "factors", "weights", "twoclass", "multiclass")
  )
}

trainLearner.classif.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
  # nolint

  list(weights = .weights)
}

predictLearner.classif.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
  # nolint

  rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__6", makeRLearner.classif.__mlrmocklearners__6)
registerS3method("trainLearner", "classif.__mlrmocklearners__6", trainLearner.classif.__mlrmocklearners__6)
registerS3method("predictLearner", "classif.__mlrmocklearners__6", predictLearner.classif.__mlrmocklearners__6)