1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
# learner with error "foo" in predict
makeRLearner.classif.__mlrmocklearners__1 = function() {
# nolint
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__1", package = character(0L), par.set = makeParamSet(),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__1 = function(.learner, .task, .subset, .weights = NULL, ...) list() # nolint
predictLearner.classif.__mlrmocklearners__1 = function(.learner, .model, .newdata, ...) stop("foo") # nolint
registerS3method("makeRLearner", "classif.__mlrmocklearners__1", makeRLearner.classif.__mlrmocklearners__1)
registerS3method("trainLearner", "classif.__mlrmocklearners__1", trainLearner.classif.__mlrmocklearners__1)
registerS3method("predictLearner", "classif.__mlrmocklearners__1", predictLearner.classif.__mlrmocklearners__1)
# for tuning, produces errors en masse
makeRLearner.classif.__mlrmocklearners__2 = function() {
# nolint
# nolint
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__2", package = character(0L),
par.set = makeParamSet(
makeNumericLearnerParam("alpha", lower = 0, upper = 1)
),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__2 = function(.learner, .task, .subset, .weights = NULL, alpha, ...) {
# nolint
if (alpha < 0.5) {
stop("foo")
}
list()
}
predictLearner.classif.__mlrmocklearners__2 = function(.learner, .model, .newdata, ...) {
# nolint
as.factor(sample(.model$task.desc$class.levels, nrow(.newdata), replace = TRUE))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__2", makeRLearner.classif.__mlrmocklearners__2)
registerS3method("trainLearner", "classif.__mlrmocklearners__2", trainLearner.classif.__mlrmocklearners__2)
registerS3method("predictLearner", "classif.__mlrmocklearners__2", predictLearner.classif.__mlrmocklearners__2)
# learner with error "foo" in train
makeRLearner.classif.__mlrmocklearners__3 = function() {
# nolint
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__3", package = character(0L), par.set = makeParamSet(),
properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__3 = function(.learner, .task, .subset, .weights = NULL, ...) stop("foo") # nolint
predictLearner.classif.__mlrmocklearners__3 = function(.learner, .model, .newdata, ...) 1L # nolint
registerS3method("makeRLearner", "classif.__mlrmocklearners__3", makeRLearner.classif.__mlrmocklearners__3)
registerS3method("trainLearner", "classif.__mlrmocklearners__3", trainLearner.classif.__mlrmocklearners__3)
registerS3method("predictLearner", "classif.__mlrmocklearners__3", predictLearner.classif.__mlrmocklearners__3)
# learner with different "when" settings for hyperpars
makeRLearner.regr.__mlrmocklearners__4 = function() {
# nolint
makeRLearnerRegr(
cl = "regr.__mlrmocklearners__4", package = character(0L),
par.set = makeParamSet(
makeNumericLearnerParam("p1", when = "train"),
makeNumericLearnerParam("p2", when = "predict"),
makeNumericLearnerParam("p3", when = "both")
),
properties = c("missings", "numerics", "factors")
)
}
trainLearner.regr.__mlrmocklearners__4 = function(.learner, .task, .subset, .weights = NULL, p1, p3, ...) {
# nolint
list(foo = p1 + p3)
}
predictLearner.regr.__mlrmocklearners__4 = function(.learner, .model, .newdata, p2, p3) {
# nolint
y = rep(1, nrow(.newdata))
y * .model$learner.model$foo + p2 + p3
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__4", makeRLearner.regr.__mlrmocklearners__4)
registerS3method("trainLearner", "regr.__mlrmocklearners__4", trainLearner.regr.__mlrmocklearners__4)
registerS3method("predictLearner", "regr.__mlrmocklearners__4", predictLearner.regr.__mlrmocklearners__4)
# Learner cannot use expression in param requires
makeRLearner.classif.__mlrmocklearners__5 = function() {
# nolint
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__5",
package = "mlr",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "a", values = c("x", "y")),
makeNumericLearnerParam(id = "b", lower = 0.0, upper = 1.0, requires = expression(a == "x"))
),
properties = c("twoclass", "multiclass", "numerics", "factors", "prob")
)
}
trainLearner.classif.__mlrmocklearners__5 = function(.learner, .task, .subset, .weights = NULL, ...) {
# nolint
}
predictLearner.classif.__mlrmocklearners__5 = function(.learner, .model, .newdata) {
# nolint
rep(factor(.model$factor.levels[[.model$task.desc$target]][1]), nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__5", makeRLearner.classif.__mlrmocklearners__5)
registerS3method("trainLearner", "classif.__mlrmocklearners__5", trainLearner.classif.__mlrmocklearners__5)
registerS3method("predictLearner", "classif.__mlrmocklearners__5", predictLearner.classif.__mlrmocklearners__5)
# stores weights internally so we can see wether they are correctly passed down
makeRLearner.regr.__mlrmocklearners__6 = function() {
# nolint
makeRLearnerRegr(
cl = "regr.__mlrmocklearners__6", package = character(0L),
par.set = makeParamSet(),
properties = c("missings", "numerics", "factors", "weights")
)
}
trainLearner.regr.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
# nolint
list(weights = .weights)
}
predictLearner.regr.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
# nolint
rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "regr.__mlrmocklearners__6", makeRLearner.regr.__mlrmocklearners__6)
registerS3method("trainLearner", "regr.__mlrmocklearners__6", trainLearner.regr.__mlrmocklearners__6)
registerS3method("predictLearner", "regr.__mlrmocklearners__6", predictLearner.regr.__mlrmocklearners__6)
makeRLearner.classif.__mlrmocklearners__6 = function() {
# nolint
makeRLearnerClassif(
cl = "classif.__mlrmocklearners__6", package = character(0L),
par.set = makeParamSet(),
properties = c("missings", "numerics", "factors", "weights", "twoclass", "multiclass")
)
}
trainLearner.classif.__mlrmocklearners__6 = function(.learner, .task, .subset, .weights = NULL, ...) {
# nolint
list(weights = .weights)
}
predictLearner.classif.__mlrmocklearners__6 = function(.learner, .model, .newdata) {
# nolint
rep(1, nrow(.newdata))
}
registerS3method("makeRLearner", "classif.__mlrmocklearners__6", makeRLearner.classif.__mlrmocklearners__6)
registerS3method("trainLearner", "classif.__mlrmocklearners__6", trainLearner.classif.__mlrmocklearners__6)
registerS3method("predictLearner", "classif.__mlrmocklearners__6", predictLearner.classif.__mlrmocklearners__6)
|