File: test_base_ConstantClassWrapper.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (88 lines) | stat: -rwxr-xr-x 3,116 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

test_that("ConstantClassWrapper predicts with response", {
  lrn1 = makeLearner("classif.rpart")
  lrn2 = makeConstantClassWrapper(lrn1)

  # multiple classes present
  m1 = train(lrn1, multiclass.task, subset = multiclass.train.inds)
  m2 = train(lrn2, multiclass.task, subset = multiclass.train.inds)
  expect_false(inherits(m2, "FailureModel"))

  p1 = predict(m1, task = multiclass.task, subset = multiclass.test.inds)
  p2 = predict(m2, task = multiclass.task, subset = multiclass.test.inds)
  p1$time = 0
  p2$time = 0
  expect_equal(p1, p2)

  # one class present
  train.inds = 1:20
  try({
    suppressAll({
      train(lrn1, multiclass.task, subset = train.inds)
    })
    fail("Data has more than one class.")
  }, silent = TRUE)
  m2 = train(lrn2, multiclass.task, subset = train.inds)
  expect_false(inherits(m2, "FailureModel"))

  p2 = predict(m2, task = multiclass.task, subset = multiclass.test.inds)
  have = getPredictionResponse(p2)
  want = rep.int(unique(multiclass.df[train.inds, multiclass.target]), length(multiclass.test.inds))
  expect_equal(have, want)
})

test_that("ConstantClassWrapper predicts with frac", {
  lrn1 = makeLearner("classif.rpart")
  lrn2 = makeConstantClassWrapper(lrn1, frac = 0.1)

  train.inds = 1:51
  m1 = train(lrn1, multiclass.task, subset = multiclass.train.inds)
  m2 = train(lrn2, multiclass.task, subset = train.inds)
  expect_false(inherits(m2, "FailureModel"))

  p1 = predict(m1, task = multiclass.task, subset = multiclass.test.inds)
  p2 = predict(m2, task = multiclass.task, subset = multiclass.test.inds)
  expect_false(all(getPredictionResponse(p1) == getPredictionResponse(p2)))

  have = getPredictionResponse(p2)
  want = rep.int(multiclass.df[1, multiclass.target], length(multiclass.test.inds))
  expect_equal(have, want)
})

test_that("ConstantClassWrapper predicts with probs", {
  lrn1 = makeLearner("classif.rpart", predict.type = "prob")
  lrn2 = makeConstantClassWrapper(lrn1)

  # multiple classes present
  m1 = train(lrn1, multiclass.task, subset = multiclass.train.inds)
  m2 = train(lrn2, multiclass.task, subset = multiclass.train.inds)
  expect_false(inherits(m2, "FailureModel"))

  p1 = predict(m1, task = multiclass.task, subset = multiclass.test.inds)
  p2 = predict(m2, task = multiclass.task, subset = multiclass.test.inds)
  p1$time = 0
  p2$time = 0
  expect_equal(p1, p2)

  # one class present
  train.inds = 1:20
  try({
    suppressAll({
      train(lrn1, multiclass.task, subset = train.inds)
    })
    fail("Data has more than one class.")
  }, silent = TRUE)
  m2 = train(lrn2, multiclass.task, subset = train.inds)
  expect_false(inherits(m2, "FailureModel"))

  p2 = predict(m2, task = multiclass.task, subset = multiclass.test.inds)
  have = getPredictionResponse(p2)
  want = rep.int(unique(multiclass.df[train.inds, multiclass.target]), length(multiclass.test.inds))
  expect_equal(have, want)

  probs = getPredictionProbabilities(p2)
  sapply(names(probs), function(col) {
    prob = ifelse(col == unique(multiclass.df[train.inds, multiclass.target]), 1, 0)
    expect_true(all(probs[col] == prob))
  })
})