File: test_base_convertBMRToRankMatrix.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (39 lines) | stat: -rwxr-xr-x 1,562 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

test_that("convertBMRToRankMatrix", {
  lrns = list(makeLearner("classif.nnet"), makeLearner("classif.rpart"))
  tasks = list(multiclass.task, binaryclass.task)
  rdesc = makeResampleDesc("CV", iters = 2L)
  meas = list(acc, mmce, ber, featperc)
  res = benchmark(lrns, tasks, rdesc, meas)
  n.tsks = length(getBMRTaskIds(res))
  n.lrns = length(getBMRLearnerIds(res))

  # measure = NULL
  r = convertBMRToRankMatrix(res)
  expect_class(r, "matrix")
  expect_equal(dim(r), c(n.lrns, n.tsks))
  expect_equal(ignore_attr = TRUE, colnames(r), getBMRTaskIds(res))
  expect_equal(ignore_attr = TRUE, rownames(r), getBMRLearnerIds(res))
  expect_equal(sum(r), sum(1:n.lrns * n.tsks))

  # measure = ber
  r = convertBMRToRankMatrix(res, ber)
  expect_class(r, "matrix")
  expect_equal(dim(r), c(n.lrns, n.tsks))
  expect_equal(ignore_attr = TRUE, rownames(r), getBMRLearnerIds(res))
  expect_equal(sum(r), sum(1:n.lrns * n.tsks))

  # check ties.method
  r = convertBMRToRankMatrix(res, featperc, ties.method = "first")
  expect_equal(as.numeric(r[, 1]), 1:2)
  expect_equal(as.numeric(r[, 2]), 1:2)
  r = convertBMRToRankMatrix(res, featperc, ties.method = "average")
  expect_equal(as.numeric(r[, 1]), c(1.5, 1.5))
  expect_equal(as.numeric(r[, 2]), c(1.5, 1.5))

  # check that col and row names are right if only one task is given
  res = benchmark(lrns, binaryclass.task, rdesc, meas)
  r = convertBMRToRankMatrix(res)
  expect_equal(ignore_attr = TRUE, rownames(r), getBMRLearnerIds(res))
  expect_equal(ignore_attr = TRUE, colnames(r), getBMRTaskIds(res))
})