File: test_base_fda.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (436 lines) | stat: -rw-r--r-- 18,549 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

test_that("makeFunctionalData works", {
  df = data.frame(matrix(rnorm(10^2), nrow = 10))
  df$fct = as.factor(letters[1:10])
  df$ord = as.ordered(1:10)
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1:5, "fd2" = 6:9))
  expect_class(fdf[, 1], "numeric")
  expect_class(fdf[, 2], "factor")
  expect_class(fdf[, 3], c("ordered", "factor"))
  expect_class(fdf[, 4], "matrix")
  expect_equal(dim(fdf), c(10, 5))
  expect_class(fdf, "data.frame")
})

test_that("FDA properties work", {
  df = data.frame(matrix(rnorm(100), nrow = 10), "target" = sample(letters[1:2], 10, replace = TRUE))
  # Transform to functional data (fd.features indicate column names or indices)
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1:6, "fd2" = 8:10))
  # Create a classification task
  tsk = makeClassifTask(data = fdf, target = "target")
  lrn = makeLearner("classif.fdausc.knn")
  # Error for multiple functional inputs
  expect_error(resample(lrn, subsetTask(tsk, features = 2:3), cv2), "more than one functional inputs")
  # Error for numeric inputs
  expect_error(train(lrn, subsetTask(tsk, features = 1:3)), "numeric inputs")
  expect_error(train(lrn, subsetTask(tsk, features = 1)), "numeric inputs")
  # No error for single functional
  expect_silent(train(lrn, subsetTask(tsk, features = 2)))
  expect_silent(train(lrn, subsetTask(tsk, features = 3)))
})

test_that("makeFunctionalData subsetting works", {
  df = data.frame(matrix(rnorm(10^2), nrow = 10))
  df$fct = as.factor(letters[1:10])
  df$ord = as.ordered(1:10)
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1:5, "fd2" = 6:9))

  # Subset rows
  fdf2 = fdf[1:5, , drop = FALSE]
  expect_class(fdf2[, 1], "numeric")
  expect_class(fdf2[, 2], "factor")
  expect_class(fdf2[, 3], c("ordered", "factor"))
  expect_class(fdf2[, 4], "matrix")
  expect_class(fdf2[, 5], "matrix")
  expect_equal(dim(fdf2), c(5, 5))
  expect_class(fdf2, "data.frame")

  # Subset cols
  fdf3 = fdf[, 2:4, drop = FALSE]
  expect_class(fdf3[, 1], "factor")
  expect_class(fdf3[, 2], c("ordered", "factor"))
  expect_class(fdf3[, 3], "matrix")
  expect_equal(dim(fdf3), c(10, 3))
  expect_class(fdf3, "data.frame")
})

test_that("makeFunctionalData works for different inputs", {
  df = data.frame(matrix(rnorm(50), nrow = 5))
  # for 1-D matricies
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1, "fd2" = 2:10))
  expect_class(fdf[, 1], "matrix")
  expect_class(fdf[, 2], "matrix")
  expect_equal(dim(fdf), c(5, 2))
  expect_class(fdf, "data.frame")

  # for column name inputs
  fdf = makeFunctionalData(df, fd.features = list("fd1" = "X1", "fd2" = paste0("X", 2:10)))
  expect_class(fdf[, 1], "matrix")
  expect_class(fdf[, 2], "matrix")
  expect_equal(dim(fdf), c(5, 2))
  expect_class(fdf, "data.frame")

  # for fd.features = NULL
  fdf = makeFunctionalData(df, fd.features = NULL)
  expect_class(fdf[, 1], "matrix")
  expect_equal(dim(fdf), c(5, 1))
  expect_class(fdf, "data.frame")

  # for fd.features is an empy list
  fdf = makeFunctionalData(df, fd.features = list())
  expect_class(fdf[, 1], "numeric")
  expect_equal(dim(fdf), c(5, 10))
  expect_class(fdf, "data.frame")

  # default
  fdf = makeFunctionalData(df)
  expect_class(fdf[, 1], "matrix")
  expect_equal(dim(fdf), c(5, 1))
  expect_class(fdf, "data.frame")

  # data.frame already has matrix
  # FIXME: The colnames in prints are ugly.
  df2 = df[, 1, drop = FALSE]
  df2$fd1 = as.matrix(df[, 2:10])
  fdf = makeFunctionalData(df2, fd.features = list("fd2" = "X1"))
  expect_class(fdf[, 1], "matrix")
  expect_class(fdf[, 2], "matrix")
  expect_equal(dim(fdf), c(5, 2))
  expect_class(fdf, "data.frame")
})

test_that("getFunctionalFeatures works for different inputs", {
  fdf = getFunctionalFeatures(gunpoint.task, features = getTaskNFeats(gunpoint.task))
  expect_class(fdf[, 1], "matrix")
  expect_data_frame(fdf, ncols = 1L, nrows = 200L)

  fdf2 = getTaskData(gunpoint.task, functionals.as = "matrix")
  fdf3 = getFunctionalFeatures(fdf2, features = getTaskNFeats(gunpoint.task))
  expect_class(fdf3[, 1], "matrix")
  expect_data_frame(fdf3, ncols = 1L, nrows = 200L)

  # Throws errors
  expect_error(getFunctionalFeatures(matrix("blub"), features = getTaskNFeats(gunpoint.task)))
  expect_error(getFunctionalFeatures(data.frame("blub"), features = getTaskNFeats(gunpoint.task)),
    "No functional features in the data")

  # Works for multiple functionals
  fdf4 = getFunctionalFeatures(fuelsubset.task, features = getTaskFeatureNames(fuelsubset.task))
  expect_class(fdf4[, 1], "matrix")
  expect_class(fdf4[, 2], "matrix")
  expect_data_frame(fdf4, ncols = 2L, nrows = 129L)

  # Params for task method work
  fdf = getFunctionalFeatures(fuelsubset.task, subset = 1:100, features = 1:2)
  expect_class(fdf[, 1], "matrix")
  expect_data_frame(fdf, ncols = 1L, nrows = 100L)
})

test_that("makeFunctionalData Tasks work", {
  df = data.frame(matrix(rnorm(50), nrow = 5))
  df$tcl = as.factor(letters[1:5])
  df$treg = 1:5
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1, "fd2" = 5:10, "fd3" = c("X2", "X3", "X4")))

  clt = makeClassifTask(data = fdf, target = "tcl")
  expect_class(clt, c("ClassifTask", "SupervisedTask", "Task"))
  expect_equal(clt$task.desc$n.feat["functionals"], c("functionals" = 3L))
  expect_equal(clt$task.desc$n.feat["numerics"], c("numerics" = 1L))

  subs.clt = subsetTask(clt, subset = c(2, 5), features = getTaskFeatureNames(clt))
  expect_class(subs.clt, c("ClassifTask", "SupervisedTask", "Task"))
  expect_equal(subs.clt$task.desc$n.feat["functionals"], c("functionals" = 3L))
  expect_equal(subs.clt$task.desc$n.feat["factors"], c("factors" = 0L))
  expect_equal(subs.clt$task.desc$n.feat["numerics"], c("numerics" = 1L))
  expect_equal(subs.clt$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.clt$task.desc$size, 2L)

  subs.clt2 = subsetTask(clt, features = c(1, 3))
  expect_class(subs.clt2, c("ClassifTask", "SupervisedTask", "Task"))
  expect_equal(subs.clt2$task.desc$n.feat["functionals"], c("functionals" = 1L))
  expect_equal(subs.clt2$task.desc$n.feat["factors"], c("factors" = 0L))
  expect_equal(subs.clt2$task.desc$n.feat["numerics"], c("numerics" = 1L))
  expect_equal(subs.clt2$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.clt2$task.desc$size, 5L)

  regt = makeRegrTask(data = fdf, target = "treg")
  expect_class(regt, c("RegrTask", "SupervisedTask", "Task"))
  expect_equal(regt$task.desc$n.feat["functionals"], c("functionals" = 3L))
  expect_equal(regt$task.desc$n.feat["factors"], c("factors" = 1L))

  subs.regt = subsetTask(regt, features = 1:2)
  expect_class(subs.regt, c("RegrTask", "SupervisedTask", "Task"))
  expect_equal(subs.regt$task.desc$n.feat["factors"], c("factors" = 1L))
  expect_equal(subs.regt$task.desc$n.feat["numerics"], c("numerics" = 0L))
  expect_equal(subs.regt$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.regt$task.desc$n.feat["functionals"], c("functionals" = 1L))
  expect_equal(subs.regt$task.desc$size, 5L)

  clustt = makeClusterTask(data = fdf)
  expect_class(clustt, c("ClusterTask", "UnsupervisedTask", "Task"))
  expect_equal(clustt$task.desc$n.feat["functionals"], c("functionals" = 3L))
  expect_equal(clustt$task.desc$n.feat["factors"], c("factors" = 1L))
  expect_equal(clustt$task.desc$n.feat["numerics"], c("numerics" = 1L))

  subs.clust1 = subsetTask(clustt, subset = 2:4, features = getTaskFeatureNames(clustt))
  expect_class(subs.clust1, c("ClusterTask", "UnsupervisedTask", "Task"))
  expect_equal(subs.clust1$task.desc$n.feat["factors"], c("factors" = 1L))
  expect_equal(subs.clust1$task.desc$n.feat["numerics"], c("numerics" = 1L))
  expect_equal(subs.clust1$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.clust1$task.desc$size, 3L)

  subs.clust2 = subsetTask(clustt, features = 2:4)
  expect_class(subs.clust2, c("ClusterTask", "UnsupervisedTask", "Task"))
  expect_equal(subs.clust2$task.desc$n.feat["functionals"], c("functionals" = 2L))
  expect_equal(subs.clust2$task.desc$n.feat["factors"], c("factors" = 0L))
  expect_equal(subs.clust2$task.desc$n.feat["numerics"], c("numerics" = 1L))
  expect_equal(subs.clust2$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.clust2$task.desc$size, 5L)
})

test_that("getTaskData for functionals", {
  df = data.frame(matrix(rnorm(50), nrow = 5))
  df$tcl = as.factor(letters[1:5])
  df$treg = 1:5
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1, "fd2" = 5:10, "fd3" = c("X2", "X3", "X4")))

  # For a classification
  clt = makeClassifTask(data = fdf, target = "tcl")
  expect_message({
    tdata1 = getTaskData(clt, functionals.as = "dfcols")
  }, "have been converted to numerics")
  expect_true(!("matrix" %in% lapply(tdata1, class)))
  expect_equal(tdata1[, getTaskTargetNames(clt)], as.factor(letters[1:5]))

  tdata2 = getTaskData(clt, functionals.as = "matrix")
  expect_true("matrix" %in% unlist(lapply(tdata2, class)))
  expect_equal(tdata2[, getTaskTargetNames(clt)], as.factor(letters[1:5]))


  tdata3 = getTaskData(clt, functionals.as = "matrix", target.extra = TRUE)
  expect_equal(tdata3$target, as.factor(letters[1:5]))
  expect_true("matrix" %in% unlist(lapply(tdata3$data, class)))

  expect_message({
    tdata4 = getTaskData(clt, functionals.as = "dfcols", target.extra = TRUE)
  })
  expect_true(!("matrix" %in% lapply(tdata4$data, class)))
  expect_equal(tdata4$target, as.factor(letters[1:5]))

  # For clustering task
  clustt = makeClusterTask(data = fdf)
  expect_message({
    tdatacl1 = getTaskData(clustt, functionals.as = "dfcols")
  }, "have been converted to numerics")
  expect_true(!("matrix" %in% lapply(tdatacl1, class)))
  tdatacl2 = getTaskData(clustt, functionals.as = "matrix")
  expect_true("matrix" %in% unlist(lapply(tdatacl2, class)))
})

test_that("changeData for functionals", {
  df = data.frame(matrix(rnorm(50), nrow = 5))
  df$tcl = as.factor(letters[1:5])
  df$treg = 1:5
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1, "fd2" = 5:10, "fd3" = c("X2", "X3", "X4")))

  # After changeData, task stays the same
  clt = makeClassifTask(data = fdf, target = "tcl")
  tdata = getTaskData(clt, functionals.as = "matrix")
  changedata = changeData(clt, tdata)
  changedata$env = NULL
  clt$env = NULL
  expect_equal(changedata, clt)

  subs.clt = changeData(clt, tdata[1:3, 1:3])
  expect_class(subs.clt, c("ClassifTask", "SupervisedTask", "Task"))
  expect_equal(subs.clt$task.desc$n.feat["functionals"], c("functionals" = 1L))
  expect_equal(subs.clt$task.desc$n.feat["factors"], c("factors" = 0L))
  expect_equal(subs.clt$task.desc$n.feat["numerics"], c("numerics" = 1L))
  expect_equal(subs.clt$task.desc$n.feat["ordered"], c("ordered" = 0L))
  expect_equal(subs.clt$task.desc$size, 3L)
})

test_that("makeFunctionalData produces valid error messages", {
  df = data.frame("x" = 1:3, "y" = 2:4, "z" = letters[1:3])
  expect_error(makeFunctionalData(df, fd.features = list("fd1" = 1:4)),
    "Must be a subset of")
  expect_error(makeFunctionalData(df, fd.features = list("fd1" = 1:3)),
    "contains non-integer")

  # Technically we allow functional features of length >= 1
  fdf = makeFunctionalData(df, fd.features = list("fd1" = 1, "fd2" = 2))
  expect_class(fdf$fd1, "matrix")
  expect_class(fdf$fd2, "matrix")
  fdf2 = makeFunctionalData(df, fd.features = list("fd1" = "x", "fd2" = "y"))
  expect_class(fdf2$fd1, "matrix")
  expect_class(fdf2$fd2, "matrix")
  expect_equal(fdf, fdf2)

  # Exclude.cols works
  expect_class(makeFunctionalData(df, fd.features = list(), exclude.cols = "z"), "data.frame")

  # Exclude.cols works for character
  fdf3 = makeFunctionalData(df, fd.features = NULL, exclude.cols = c("z", "y"))
  expect_class(fdf3$fd1, "matrix")
  expect_class(fdf3[["y"]], "integer")
  expect_equal(dim(fdf3$fd1), c(3, 1))

  # Exclude.cols works for integer
  fdf4 = makeFunctionalData(df, fd.features = NULL, exclude.cols = c(3, 2))
  expect_class(fdf4[, "fd1"], "matrix")
  expect_class(fdf4[, "y"], "integer")
  expect_equal(dim(fdf4$fd1), c(3, 1))

  # Check if exclude.cols overwrites fd.features
  fdf5 = makeFunctionalData(df, fd.features = list("fd1" = 1:2), exclude.cols = "x")
  expect_class(fdf5[, "fd1"], "matrix")
  expect_equal(dim(fdf5$fd1), c(3, 1))

  expect_error(makeFunctionalData(data.frame(matrix(letters[1:9], nrow = 3)),
    fd.features = list("fd1" = 1:3)), "fd.features contains non-integer")
})

test_that("hasFunctionals works", {
  expect_false(hasFunctionalFeatures(iris.task))
  expect_false(hasFunctionalFeatures(getTaskData(iris.task)))

  expect_true(hasFunctionalFeatures(fda.binary.gp.task))
  expect_true(hasFunctionalFeatures(getTaskData(fda.binary.gp.task, functionals.as = "matrix")))
})

test_that("getTaskData for functional tasks", {
  expect_true(hasFunctionalFeatures(getTaskData(fda.binary.gp.task, functionals.as = "matrix")))
  expect_message({
    df = getTaskData(fda.binary.gp.task, subset = 1:50, functionals.as = "dfcols")
  })
  expect_false(hasFunctionalFeatures(df))

  # Subset rows
  expect_true(hasFunctionalFeatures(getTaskData(fda.binary.gp.task, subset = 1:50, functionals.as = "matrix")))
  expect_message({
    df = getTaskData(fda.binary.gp.task, subset = 1:50, functionals.as = "dfcols")
  })
  expect_false(hasFunctionalFeatures(df))

  # We can not really subset cols for this task.
  expect_false(hasFunctionalFeatures(getTaskData(fda.regr.fs.task, features = 1, functionals.as = "matrix")))
  expect_true(hasFunctionalFeatures(getTaskData(fda.regr.fs.task, features = 2, functionals.as = "matrix")))
  expect_true(hasFunctionalFeatures(getTaskData(fda.regr.fs.task, features = 3, functionals.as = "matrix")))
  expect_silent({
    df = getTaskData(fda.regr.fs.task, features = 1, functionals.as = "dfcols")
  })
  expect_false(hasFunctionalFeatures(df))
  expect_message({
    df = getTaskData(fda.regr.fs.task, features = c(2, 3), functionals.as = "dfcols")
  })
  expect_false(hasFunctionalFeatures(df))


  expect_error(hasFunctionalFeatures(getTaskData(fda.binary.gp.task, features = 2, functionals.as = "matrix")))
  expect_error(hasFunctionalFeatures(getTaskData(fda.binary.gp.task, features = 2, functionals.as = "dfcols")))

  expect_false(hasFunctionalFeatures(getTaskData(iris.task, functionals.as = "matrix")))
  expect_silent({
    df = getTaskData(iris.task, subset = 1:50, functionals.as = "matrix")
  })
  expect_false(hasFunctionalFeatures(df))
  expect_false(hasFunctionalFeatures(getTaskData(iris.task, functionals.as = "dfcols")))
  expect_silent({
    df = getTaskData(iris.task, subset = 1:50, functionals.as = "dfcols")
  })
  expect_false(hasFunctionalFeatures(df))
})

test_that("benchmarking on fda tasks works", {
  skip_on_cran()

  # subscript out of bounds
  # Backtrace:
  #   1. testthat::expect_message(...)
  # 8. mlr::benchmark(lrns2, fda.regr.fs.task, hout, measures = getDefaultMeasure(fda.regr.fs.task))
  # 9. parallelMap::parallelMap(...)
  # 10. base::mapply(...)
  # 12. mlr::resample(...)
  # 13. parallelMap::parallelMap(...)
  # 14. base::mapply(...)
  # 16. mlr:::calculateResampleIterationResult(...)
  # 18. mlr:::predict.WrappedModel(m, task, subset = test.i)
  # 31. mlr:::predictLearner.regr.FDboost(...)
  # ...
  # 37. base::lapply(which, pfun, agg = "sum")
  # 38. mboost:::FUN(X[[i]], ...)
  # 39. bl[[w]]$predict(ens[ix], newdata = newdata, aggregate = agg)
  # 40. mboost:::newX(newdata, prediction = TRUE)
  # 41. mboost:::Xfun(mf, vary, args)
  # 42. mboost:::newX1(as.data.frame(mf[bl1$get_names()]), prediction = args$prediction)
  # 43. mboost:::check_newdata(newdata, blg, mf)
  # 45. base::sapply(1:length(cl1), function(i) all(cl1[[i]] == cl2[[i]]))
  # 46. base::lapply(X = X, FUN = FUN, ...)
  # 47. mboost:::FUN(X[[i]], ...)

  lrns = list(makeLearner("classif.fdausc.knn"),
    makeLearner("classif.rpart"),
    makeLearner("classif.featureless"))
  expect_message({
    bmr = benchmark(lrns, fda.binary.gp.task.small, cv2,
      measures = getDefaultMeasure(fda.binary.gp.task.small))
  }, "Functional features have been")
  expect_class(bmr, "BenchmarkResult")
  expect_equal(names(bmr$results$gp.fdf), c("classif.fdausc.knn",
    "classif.rpart", "classif.featureless"))
  expect_numeric(as.data.frame(bmr)$mmce, lower = 0L, upper = 1L)

  # Test benchmark mixed learners regression
  lrns2 = list(makeLearner("regr.FDboost"), makeLearner("regr.rpart"),
    makeLearner("regr.featureless"))
  # suppress fdboost warning
  expect_message({
    bmr2 = suppressWarnings(benchmark(lrns2, fda.regr.fs.task, hout,
      measures = getDefaultMeasure(fda.regr.fs.task)))
  }, "Functional features have been")
  expect_class(bmr2, "BenchmarkResult")
  expect_equal(names(bmr2$results$fs.fdf), c("regr.FDboost", "regr.rpart", "regr.featureless"))
  expect_numeric(as.data.frame(bmr2)$mse, lower = 0L, upper = Inf)
  expect_error(train(makeLearner("classif.fdausc.knn"), iris.task), "numeric inputs")
})

test_that("makeFunctionalData for matricies contained in data.frame", {
  df = getTaskData(fuelsubset.task, functionals.as = "matrix")
  df2 = makeFunctionalData(df, fd.features = list("UVVIS" = "UVVIS", "NIR" = "NIR"),
    exclude.cols = c("heatan", "h20"))
  expect_equal(ignore_attr = TRUE, df, df2)

  df = data.frame(matrix(rnorm(100), ncol = 10L))
  df$fd1 = matrix(rnorm(100), ncol = 10L)
  fdf = makeFunctionalData(df, fd.features = list("fd2" = 1:10))
  expect_data_frame(fdf, nrows = 10L, ncols = 2L)
  expect_true(all(colnames(fdf) == c("fd1", "fd2")))
})

test_that("Self-created data.frame's", {
  df = data.frame(matrix(rnorm(100), ncol = 10L))
  df$fd1 = matrix(rnorm(100), ncol = 10L)
  task = makeRegrTask(data = df, target = "X1")
  expect_class(task, "Task")
  expect_true(task$task.desc$n.feat["functionals"] == 1L)

  # Throws error for character / factor etc.
  df2 = data.frame(matrix(rnorm(100), ncol = 10L))
  df2$fd1 = matrix(rep("a", 100L), ncol = 10L)
  expect_error(makeRegrTask(data = df2, target = "X1"), regexp = "Unsupported feature type")

  df2 = data.frame(matrix(rnorm(100), ncol = 10L))
  df2$fd1 = matrix(as.factor(rep("a", 100L)), ncol = 10L)
  expect_error(makeRegrTask(data = df2, target = "X1"), regexp = "Unsupported feature type")
})

# Test whether we support stratification: #1669
test_that("supports stratification", {
  res = makeResampleDesc(method = "RepCV", predict = "test",
    stratify = TRUE,
    folds = 2L, reps = 2L)

  # resampling instances
  resinst = makeResampleInstance(res, gunpoint.task)
  expect_class(resinst, "ResampleInstance")
})