File: test_base_fda_extractFDAFeaturesMethods.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (223 lines) | stat: -rw-r--r-- 9,218 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
test_that("Wavelet method are equal to package", {
  requirePackagesOrSkip("tsfeatures")
  requirePackagesOrSkip("mboost")
  requirePackagesOrSkip("FDboost")
  requirePackagesOrSkip("stabs")
  requirePackagesOrSkip("rucrdtw")
  requirePackagesOrSkip("parallel")

  requirePackagesOrSkip("wavelets", default.method = "load")
  gp = getTaskData(gunpoint.task, subset = seq_len(10), target.extra = TRUE, functionals.as = "matrix")

  # Extractor
  extr = extractFDAWavelets()
  wav.vals = extr$learn(data = gp$data, target = "X1", col = "fd", filter = "la8", boundary = "reflection")
  wavelets.gp = extr$reextract(data = gp$data, target = "X1", col = "fd", vals = wav.vals, args = NULL)

  # Reference
  df = BBmisc::convertRowsToList(gp$data[, "fd", drop = FALSE])
  wtdata = t(BBmisc::dapply(df, fun = function(x) {
    wt = wavelets::dwt(as.numeric(x), filter = "la8", boundary = "reflection")
    unlist(c(wt@W, wt@V[[wt@level]]))
  }))
  df = as.data.frame(wtdata)
  colnames(df) = stringi::stri_paste("wav", "la8", seq_len(ncol(wtdata)), sep = ".")

  expect_equal(nrow(wavelets.gp), nrow(gp$data))
  expect_equal(wavelets.gp, df)
  # Too many vanishing moments (support width) expected
  expect_error(extractWaveletFeatures(data = gp, filter = "d10"))
})

test_that("extract and reextract Wavelets", {
  requirePackagesOrSkip("wavelets", default.method = "load")
  gp.subset = subsetTask(gunpoint.task, features = 1L)
  fm = list("fd" = extractFDAWavelets(filter = "haar", boundary = "reflection"))
  t3 = extractFDAFeatures(gp.subset, feat.methods = fm)
  t4 = reextractFDAFeatures(gp.subset, t3$desc)
  expect_equal(getTaskFeatureNames(t3$task), getTaskFeatureNames(t4))
  expect_equal(t3$desc$target, getTaskTargetNames(t4))
  expect_equal(dim(getTaskData(t3$task)), dim(getTaskData(t4)))
})

test_that("getFDAMultiResFeatures works on data.frame", {
  gp = getTaskData(fda.binary.gp.task.small, functionals.as = "matrix")

  ngp1 = extractFDAMultiResFeatures()$learn(
    data = gp, col = "fd", res.level = 3,
    shift = 0.5, seg.lens = NULL)
  ngp1 = extractFDAMultiResFeatures()$reextract(data = gp, col = "fd", vals = ngp1)
  expect_true(nrow(ngp1) == nrow(gp))
  expect_true(ncol(ngp1) == 9L)

  ngp2 = extractFDAMultiResFeatures()$learn(
    data = gp, col = "fd", seg.lens = c(15, 15),
    res.level = 3, shift = 0.5)
  ngp2 = extractFDAMultiResFeatures()$reextract(data = gp, col = "fd", vals = ngp2)
  expect_true(nrow(ngp2) == nrow(gp))
  expect_true(ncol(ngp2) == 18L)

  df = getTaskData(fuelsubset.task, functionals.as = "matrix")

  # Learn args equal to method args
  vals1 = extractFDAMultiResFeatures()$learn(df, col = "UVVIS", res.level = 2L, shift = 0.25)
  dfn1 = extractFDAMultiResFeatures()$reextract(df, col = "UVVIS", vals = vals1)
  expect_true(nrow(df) == nrow(dfn1))
  expect_true(ncol(dfn1) == 5L)

  fm = list("UVVIS" = extractFDAMultiResFeatures(res.level = 2L, shift = 0.25))
  dfn2 = extractFDAFeatures(df, feat.methods = fm)
  expect_true(nrow(df) == nrow(dfn2$data))
  expect_true(ncol(dfn2$data) == 5L + 3L)
  expect_equal(dfn1, setNames(dfn2$data[, seq_len(5)], colnames(dfn1)))


  extr = extractFDAMultiResFeatures()
  vals3 = extr$learn(df, col = "NIR", res.level = 3L, shift = 0.5, seg.lens = c(100L, 131L))
  dfn3 = extr$reextract(df, col = "NIR", vals = vals3)
  expect_true(nrow(df) == nrow(dfn3))
  expect_true(ncol(dfn3) == 19L)


  extr = extractFDAMultiResFeatures()
  vals4 = extr$learn(df, col = "NIR", res.level = 1L, shift = 0.2, seg.lens = 231L)
  dfn4 = extr$reextract(df, col = "NIR", vals = vals4)
  expect_true(nrow(df) == nrow(dfn4))
  expect_true(ncol(dfn4) == 1L)
})

test_that("extract and reextract MultiRes", {
  gp.subset = subsetTask(gunpoint.task, subset = 1:20, features = 1L)
  fm = list("fd" = extractFDAMultiResFeatures(3L, 0.4))
  t3 = extractFDAFeatures(gp.subset, feat.methods = fm)
  t4 = reextractFDAFeatures(gp.subset, t3$desc)
  expect_equal(getTaskFeatureNames(t3$task), getTaskFeatureNames(t4))
  expect_equal(t3$desc$target, getTaskTargetNames(t4))
  expect_equal(dim(getTaskData(t3$task)), dim(getTaskData(t4)))
  expect_equal(t3$task$task.desc$n.feat["numerics"], c(numerics = 12L))
})

test_that("extractFPCAFeatures is equivalent to prcomp", {
  gp = getTaskData(gunpoint.task, subset = 1:10, target.extra = TRUE, functionals.as = "matrix")

  extr = extractFDAFPCA()
  fpca.vals = extr$learn(data = gp$data, target = "X1", col = "fd", rank. = 5L)
  fpca.df = extr$reextract(data = gp$data, target = "X1", col = "fd", vals = fpca.vals)
  expect_true((nrow(gp$data) == nrow(fpca.df)))
  expect_true((ncol(fpca.df) == 5L))
  expect_match(names(fpca.df), regexp = "[FPCA]")

  # Is it equivalent to the mlr version?
  gp.mat = gp$data$fd
  fpca.df2 = predict(prcomp(gp.mat, rank. = 5L), gp.mat)
  expect_true((nrow(gp.mat) == nrow(fpca.df2)))
  expect_true((ncol(fpca.df2) == 5L))
  expect_equal(ignore_attr = TRUE, fpca.df, data.frame(fpca.df2))
})

test_that("extract and reextract FPCA", {
  gp.subset = subsetTask(gunpoint.task, subset = 1:20, features = 1L)
  fm = list("fd" = extractFDAFPCA(rank. = 5))
  t3 = extractFDAFeatures(gp.subset, feat.methods = fm)
  t4 = reextractFDAFeatures(gp.subset, t3$desc)
  expect_equal(getTaskFeatureNames(t3$task), getTaskFeatureNames(t4))
  expect_equal(t3$desc$target, getTaskTargetNames(t4))
  expect_equal(dim(getTaskData(t3$task)), dim(getTaskData(t4)))
  expect_equal(t3$task$task.desc$n.feat["numerics"], c(numerics = 5L))
})

test_that("Fourier equal to expected", {
  t = seq(from = 0, to = 1, length.out = 501)
  data = data.frame(a = 1:2)
  data$fd = matrix(c(
    .6 * cos(2 * pi * t) + .3 * cos(4 * 2 * pi * t + pi / 4),
    .8 * cos(2 * pi * t) + .1 * cos(4 * 2 * pi * t + pi / 4)
  ), nrow = 2, byrow = TRUE)
  data$a = NULL

  extr = extractFDAFourier()
  fourier.vals = extr$learn(data = data, col = "fd", trafo.coeff = "phase")
  fourier.gp = extr$reextract(data = data, col = "fd", vals = fourier.vals)

  # Phase in range [-180; 180]
  expect_true(all(fourier.gp >= -180 & fourier.gp <= 180))
  # ~ pi/4 shift for 4th component
  expect_true(all(abs(fourier.gp[, 5] - 45) < 10))
  expect_true(all(abs(fourier.gp[, 2]) < 10))
  expect_true(all(dim(fourier.gp) == c(2, 501)))

  fourier.vals = extr$learn(data = data, col = "fd", trafo.coeff = "amplitude")
  fourier.gp = extr$reextract(data = data, col = "fd", vals = fourier.vals)

  # Amplitude sqrt(Re^2 + Im^2) >= 0
  expect_true(all(fourier.gp >= 0))
  expect_true(all(abs(fourier.gp[, 2] - c(0.6, 0.8)) < 0.01))
  expect_true(all(abs(fourier.gp[, 5] - c(0.3, 0.1)) < 0.01))
  expect_true(all(dim(fourier.gp) == c(2, 501)))

  # Can not have factors
  gp2 = data.frame(v1 = t(1:4), X1 = as.factor(1))
  expect_error(extractFourierFeatures(data = gp2, trafo.coeff = "amplitude"))
})

test_that("tsfeatures works", {
  gp1 = getTaskData(fuelsubset.task, functionals.as = "matrix")[1:30, ]
  lrn = extractFDATsfeatures()$learn
  gpvals = lrn(data = gp1, col = "UVVIS")
  gpfeats = extractFDATsfeatures()$reextract(data = gp1, col = "UVVIS", vals = gpvals)
  expect_equal(nrow(gpfeats), nrow(gp1))

  extr = extractFDAFeatures(subsetTask(fuelsubset.task, subset = 1:30, features = 2),
    feat.methods = list("UVVIS" = extractFDATsfeatures()))
  expect_true(ncol(getTaskData(extr$task)) == 32L)

  reextr = reextractFDAFeatures(subsetTask(fuelsubset.task, subset = 31:35, features = 2), extr$desc)
  expect_true(ncol(getTaskData(reextr)) == 32L)
})

test_that("extraction returns correct cols", {
  requirePackagesOrSkip("tsfeatures")
  extr = extractFDAFeatures(subsetTask(fuelsubset.task, subset = 1:7),
    feat.methods = list("UVVIS" = extractFDATsfeatures()))
  reextr = reextractFDAFeatures(subsetTask(fuelsubset.task, subset = 8:14), extr$desc)
  expect_equal(extr$task$task.desc$n.feat, reextr$task.desc$n.feat)
  expect_equal(
    colnames(getTaskData(extr$task, functionals.as = "matrix")),
    colnames(getTaskData(reextr, functionals.as = "matrix")))
})

test_that("dtw extract works", {
  requirePackagesOrSkip("rucrdtw")
  task = subsetTask(fuelsubset.task, features = "UVVIS")
  daf = getTaskData(task, functionals.as = "matrix")
  daf = daf$UVVIS
  fmethods = list("UVVIS" = extractFDADTWKernel())
  res = extractFDAFeatures(fuelsubset.task, feat.methods = fmethods)
  # check output data
  df = getTaskData(res$task, functionals.as = "matrix")
  expect_s3_class(df, "data.frame")
  expect_equal(nrow(df), 129)
  expect_equal(ncol(df), 9)
})

test_that("extractBsignal features", {
  requirePackagesOrSkip("FDboost")
  methods = list("UVVIS" = extractFDABsignal(), "NIR" = extractFDABsignal())
  t = extractFDAFeatures(fuelsubset.task, feat.methods = methods)
  t2 = reextractFDAFeatures(fuelsubset.task, t$desc)
  # check output data
  df = getTaskData(t$task)
  expect_s3_class(df, "data.frame")
  expect_equal(nrow(df), 129L)
  expect_equal(ncol(df), 30L)
})

test_that("extractFDAFeaturesDTW", {
  requirePackagesOrSkip("rucrdtw")
  methods = list("UVVIS" = extractFDADTWKernel(), "NIR" = extractFDADTWKernel())
  t = extractFDAFeatures(fuelsubset.task, feat.methods = methods)
  # check output data
  df = getTaskData(t$task)
  expect_s3_class(df, "data.frame")
  expect_equal(nrow(df), 129)
})