File: test_base_getHyperPars.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (28 lines) | stat: -rwxr-xr-x 1,008 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

test_that("getHyperPars", {
  lrn = makeLearner("classif.rpart")
  expect_equal(getHyperPars(lrn), list(xval = 0))

  lrn = makeLearner("classif.lda")
  named.list = list()
  names(named.list) = character(0)
  expect_equal(getHyperPars(lrn), named.list)

  lrn = makeFilterWrapper(makeLearner("classif.rpart"))
  expect_true(setequal(names(getHyperPars(lrn)), c("xval", "fw.method")))

  lrn = makeModelMultiplexer(list("classif.rpart", "classif.lda"))
  expect_true(setequal(names(getHyperPars(lrn)), c("classif.rpart.xval", "selected.learner")))

  lrn = makeLearner("multilabel.rFerns")
  expect_true(setequal(getHyperPars(lrn), list()))

  lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
  expect_true(setequal(getHyperPars(lrn), list(xval = 0)))

  # Missing values should not be omitted and printed
  lrn = makeLearner("classif.xgboost", missing = NA)
  expect_output(print(lrn), "missing=NA")
  lrn = makeLearner("regr.xgboost", missing = NA)
  expect_output(print(lrn), "missing=NA")
})