1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
test_that("over and undersample works", {
y = binaryclass.df[, binaryclass.target]
tab1 = table(y)
task = oversample(binaryclass.task, rate = 2)
df = getTaskData(task)
tab2 = table(df[, binaryclass.target])
expect_equal(tab2["M"], tab1["M"])
expect_equal(tab2["R"], tab1["R"] * 2)
task = undersample(binaryclass.task, rate = 0.5)
df = getTaskData(task)
tab2 = table(df[, binaryclass.target])
expect_equal(tab2["M"], round(tab1["M"] / 2))
expect_equal(tab2["R"], tab1["R"])
})
test_that("over and undersample wrapper", {
rdesc = makeResampleDesc("CV", iters = 2)
lrn1 = makeLearner("classif.rpart")
lrn2 = makeUndersampleWrapper(lrn1, usw.rate = 0.5)
r = resample(lrn2, binaryclass.task, rdesc)
expect_true(!is.na(r$aggr))
lrn2 = makeOversampleWrapper(lrn1, osw.rate = 1.5)
r = resample(lrn2, binaryclass.task, rdesc)
expect_true(!is.na(r$aggr))
})
test_that("over and undersample arg check works", {
task = makeClassifTask(data = multiclass.df, target = multiclass.target)
expect_error(undersample(task, rate = 0.5), "binary")
expect_error(oversample(task, rate = 0.5), "binary")
})
test_that("over and undersample works with weights", {
task = makeClassifTask(data = binaryclass.df, target = binaryclass.target,
weights = seq_len(nrow(binaryclass.df)))
task2 = undersample(task, rate = 0.5)
expect_true(length(task2$weights) < length(task$weights))
expect_true(all(task2$weights %in% task$weights))
})
test_that("oversampling keeps all min / max obs", {
y = binaryclass.df[, binaryclass.target]
z = getMinMaxClass(y)
new.inds = sampleBinaryClass(y, 1.05, cl = z$min.name, resample.other.class = FALSE)
expect_true(setequal(intersect(z$min.inds, new.inds), z$min.inds))
})
test_that("control which class gets over or under sampled", {
set.seed(getOption("mlr.debug.seed"))
# check function oversample(), undersample()
y = binaryclass.df[, binaryclass.target]
tab1 = table(y)
z = getMinMaxClass(y)
task = oversample(binaryclass.task, rate = 2, cl = z$max.name)
df = getTaskData(task)
tab2 = table(df[, binaryclass.target])
expect_equal(tab2["R"], tab1["R"])
expect_equal(tab2["M"], tab1["M"] * 2)
task = undersample(binaryclass.task, rate = 0.5, cl = z$min.name)
df = getTaskData(task)
tab2 = table(df[, binaryclass.target])
expect_equal(tab2["R"], round(tab1["R"] / 2))
expect_equal(tab2["M"], tab1["M"])
# check over- and undersample-wrapper
z = getMinMaxClass(binaryclass.df[, binaryclass.target])
rdesc = makeResampleDesc("CV", iters = 2)
lrn1 = makeLearner("classif.rpart")
lrn2 = makeUndersampleWrapper(lrn1, usw.rate = 0.1, usw.cl = z$min.name)
r = resample(lrn2, binaryclass.task, rdesc)
expect_true(!is.na(r$aggr))
lrn2 = makeOversampleWrapper(lrn1, osw.rate = 1.5, osw.cl = z$max.name)
r = resample(lrn2, binaryclass.task, rdesc)
expect_true(!is.na(r$aggr))
})
test_that("training performance works as expected (#1357)", {
num = makeMeasure(id = "num", minimize = FALSE,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Number",
fun = function(task, model, pred, feats, extra.args) {
length(pred$data$response)
}
)
y = binaryclass.df[, binaryclass.target]
z = getMinMaxClass(y)
rdesc = makeResampleDesc("Holdout", split = .5, predict = "both")
lrn = makeUndersampleWrapper("classif.rpart", usw.rate = 0.1, usw.cl = z$max.name)
r = resample(lrn, binaryclass.task, rdesc, measures = list(setAggregation(num, train.mean)))
expect_lt(r$measures.train$num, getTaskSize(binaryclass.task) * 0.5 - 1)
lrn = makeOversampleWrapper("classif.rpart", osw.rate = 2, osw.cl = z$max.name)
r = resample(lrn, binaryclass.task, rdesc, measures = list(setAggregation(num, train.mean)))
expect_gt(r$measures.train$num, getTaskSize(binaryclass.task) * 0.5 + 1)
})
test_that("Wrapper works with weights, we had issue #2047", {
n = nrow(binaryclass.df)
w = 1:n
task = makeClassifTask(data = binaryclass.df, target = binaryclass.target, weights = w)
b = table(getTaskTargets(task))
# weights from task, use all
lrn = makeOversampleWrapper("classif.__mlrmocklearners__6", osw.rate = 1)
m = train(lrn, task)
expect_set_equal(getLearnerModel(m, more.unwrap = TRUE)$weights, w)
lrn = makeUndersampleWrapper("classif.__mlrmocklearners__6", usw.rate = 1)
m = train(lrn, task)
expect_set_equal(getLearnerModel(m, more.unwrap = TRUE)$weights, w)
# weights from task, really sample
lrn = makeOversampleWrapper("classif.__mlrmocklearners__6", osw.rate = 2)
m = train(lrn, task)
u = getLearnerModel(m, more.unwrap = TRUE)$weights
expect_equal(length(u), min(b) * 2 + max(b))
expect_subset(u, w)
lrn = makeUndersampleWrapper("classif.__mlrmocklearners__6", usw.rate = 0.5)
m = train(lrn, task)
u = getLearnerModel(m, more.unwrap = TRUE)$weights
expect_equal(length(u), round(max(b) / 2) + min(b))
expect_subset(u, w)
# weights from train
subset = c(head(which(getTaskTargets(task) == names(b)[1]), 5), head(which(getTaskTargets(task) == names(b)[2]), 5))
lrn = makeOversampleWrapper("classif.__mlrmocklearners__6", osw.rate = 2)
m = train(lrn, task, subset = subset, weights = 1:10)
u = getLearnerModel(m, more.unwrap = TRUE)$weights
expect_equal(length(u), 15)
expect_subset(u, 1:10)
lrn = makeUndersampleWrapper("classif.__mlrmocklearners__6", usw.rate = 2 / 5)
m = train(lrn, task, subset = subset, weights = 1:10)
u = getLearnerModel(m, more.unwrap = TRUE)$weights
expect_equal(length(u), 7)
expect_subset(u, 1:10)
})
|