1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
test_that("resample", {
rin1 = makeResampleInstance(makeResampleDesc("Bootstrap", iters = 4), task = multiclass.task)
rin2 = makeResampleInstance(makeResampleDesc("CV", iters = 7), task = multiclass.task)
rin3 = makeResampleInstance(makeResampleDesc("Subsample", iters = 2), task = multiclass.task)
lrn = makeLearner("classif.lda")
r1 = resample(lrn, multiclass.task, rin1)
r2 = resample(lrn, multiclass.task, rin2)
r3 = resample(lrn, multiclass.task, rin3)
p1 = r1$pred
p2 = r2$pred
p3 = r3$pred
inds = Reduce(c, rin1$test.inds)
y = getTaskTargets(multiclass.task)[inds]
expect_equal(p1$data$id, inds)
expect_equal(p1$data$truth, y)
inds = Reduce(c, rin2$test.inds)
y = getTaskTargets(multiclass.task)[inds]
expect_equal(p2$data$id, inds)
expect_equal(p2$data$truth, y)
inds = Reduce(c, rin3$test.inds)
y = getTaskTargets(multiclass.task)[inds]
expect_equal(p3$data$id, inds)
expect_equal(p3$data$truth, y)
# test printer
expect_output(print(r1), "Resample Result")
cv.i = makeResampleInstance(makeResampleDesc("CV", iters = 3), binaryclass.task)
lrn1 = makeLearner("classif.lda")
lrn2 = makeLearner("classif.lda", predict.type = "prob")
rf1 = resample(lrn1, binaryclass.task, cv.i)$pred
rf2 = resample(lrn2, binaryclass.task, cv.i)$pred
rf3 = resample(lrn2, binaryclass.task, cv.i)$pred
rf3 = setThreshold(rf3, 0)
rf4 = resample(lrn2, binaryclass.task, cv.i)$pred
rf4 = setThreshold(rf4, 1)
expect_equal(rf1$data$response, rf2$data$response)
td = getTaskDesc(binaryclass.task)
f1 = factor(rep(td$positive, cv.i$size), levels = td$class.levels)
expect_equal(rf3$data$response, f1)
f2 = factor(rep(td$negative, cv.i$size), levels = td$class.levels)
expect_equal(rf4$data$response, f2)
ct = makeClassifTask(data = iris[, c("Species", "Petal.Width")], target = "Species")
fit = resample(lrn1, ct, makeResampleDesc("CV", iters = 2))
expect_error(resample("classif.rpart", multiclass.task, makeResampleDesc("Holdout"),
measures = list()), "length >= 1")
})
test_that("resampling, predicting train set works", {
rdesc = makeResampleDesc("CV", iters = 2, predict = "train")
lrn = makeLearner("classif.rpart")
expect_error(resample(lrn, multiclass.task, rdesc), "not compatible with resampling")
rdesc = makeResampleDesc("CV", iters = 2, predict = "train")
lrn = makeLearner("classif.rpart")
m = setAggregation(mmce, train.mean)
r = resample(lrn, multiclass.task, rdesc, measures = m)
expect_false(is.na(r$aggr["mmce.train.mean"]))
expect_false(anyNA(r$pred$time))
expect_false(is.null(r$pred$predict.type))
expect_equal(getTaskDesc(multiclass.task), r$pred$task.desc)
rdesc = makeResampleDesc("CV", iters = 2, predict = "both")
lrn = makeLearner("classif.rpart")
m1 = setAggregation(mmce, train.mean)
m2 = setAggregation(mmce, test.mean)
r = resample(lrn, multiclass.task, rdesc, measures = list(m1, m2))
expect_false(is.na(r$aggr["mmce.train.mean"]))
expect_false(is.na(r$aggr["mmce.test.mean"]))
expect_false(anyNA(r$pred$time))
expect_false(is.null(r$pred$predict.type))
expect_equal(getTaskDesc(multiclass.task), r$pred$task.desc)
})
test_that("ResampleInstance can bew created from string", {
rin = makeResampleInstance("CV", size = 100)
expect_s3_class(rin$desc, "CVDesc")
expect_equal(rin$size, 100)
expect_equal(rin$desc$iters, 10)
rin = makeResampleInstance("CV", task = iris.task, iters = 17, stratify = TRUE)
expect_s3_class(rin$desc, "CVDesc")
expect_equal(rin$size, 150)
expect_equal(rin$desc$iters, 17)
})
test_that("resample checks constraints", {
expect_error(makeResampleInstance("CV", iters = 20, size = 10), "more folds")
expect_error(makeResampleInstance("RepCV", folds = 20, reps = 2L, size = 10), "more folds")
})
test_that("resample returns errors", {
configureMlr(on.learner.error = "quiet")
lrn = makeLearner("classif.__mlrmocklearners__2", alpha = 1)
z = holdout(lrn, multiclass.task)
expect_true(!is.na(z$aggr))
expect_true(is.data.frame(z$err.msgs))
expect_true(nrow(z$err.msgs) == 1L)
expect_true(all(is.na(z$err.msgs$train)))
expect_true(all(is.na(z$err.msgs$predict)))
lrn = makeLearner("classif.__mlrmocklearners__2", alpha = 0)
m = train(lrn, multiclass.task)
expect_true(isFailureModel(m))
z = crossval(lrn, multiclass.task, iters = 2L)
expect_true(is.na(z$aggr))
expect_true(is.data.frame(z$err.msgs))
expect_true(nrow(z$err.msgs) == 2L)
expect_true(all(!is.na(z$err.msgs$train)))
expect_true(all(is.na(z$err.msgs$predict)))
configureMlr(on.learner.error = "stop")
})
# issue #668
test_that("resample has error messages when prediction fails", {
on.learner.error.saved = getMlrOptions()$on.learner.error
on.learner.warning.saved = getMlrOptions()$on.learner.warning
configureMlr(on.learner.error = "quiet")
configureMlr(on.learner.warning = "quiet")
lrn = makeLearner("classif.knn")
lrn$properties = c(lrn$properties, "missings")
task = makeClassifTask("test", data = Sonar, target = "Class")
task$env$data$V1[1:2] = NA
r = crossval(lrn, task)
expect_false(all(is.na(r$err.msgs$predict)))
configureMlr(on.learner.error = on.learner.error.saved)
configureMlr(on.learner.warning = on.learner.warning.saved)
})
test_that("resample is extended by an additional measure", {
lrn = makeLearner("classif.rpart", predict.type = "prob")
# check if it works with test, both and train
predict = c("train", "test", "both")
# check if it works with different aggregation methods
aggr = list(test.mean, test.median, test.sd, test.range, test.join)
for (a in aggr) {
for (p in predict) {
rdesc = makeResampleDesc("CV", iter = 3, predict = p)
measures = list(mmce, ber, auc, brier)
# set aggregation method
measures = lapply(measures, setAggregation, a)
if (p == "train") measures = lapply(measures, setAggregation, train.mean)
# create ResampleResult with all measures
res.all = resample(lrn, binaryclass.task, rdesc, measures)
# create ResampleResult with one measure and add the other ones afterwards
res = resample(lrn, binaryclass.task, rdesc, measures[[1]])
res.add = addRRMeasure(res, measures[-1])
# check if both ResampleResult objects are equal
expect_equal(res.all$measures.train, res.add$measures.train)
expect_equal(res.all$measures.test, res.add$measures.test)
expect_equal(res.all$aggr, res.add$aggr)
}
}
# keep.pred must be TRUE
res = resample(lrn, binaryclass.task, cv3, mmce, keep.pred = FALSE)
expect_error(addRRMeasure(res, auc), "keep.pred")
})
test_that("resample printer respects show.info", {
show.info.saved = getMlrOptions()$show.info
lrn = makeLearner("regr.lm")
configureMlr(show.info = TRUE)
suppressMessages(expect_message(resample(lrn, bh.task, cv10, list(mape, medae, mse))))
configureMlr(show.info = FALSE)
expect_silent(resample(lrn, bh.task, cv10, list(mape, medae, mse)))
configureMlr(show.info = show.info.saved)
})
test_that("resample drops unseen factors in predict data set", {
data = data.frame(
a = c("a", "b", "a", "b", "a", "c"),
b = c(1, 1, 2, 2, 2, 1),
trg = c("a", "b", "a", "b", "a", "b"),
stringsAsFactors = TRUE)
task = makeClassifTask("unseen.factors", data, "trg")
resinst = makeResampleInstance("Holdout", task)
resinst$train.inds[[1]] = 1:4
resinst$test.inds[[1]] = 5:6
lrn = makeLearner("classif.logreg", fix.factors.prediction = FALSE)
model = train(lrn, subsetTask(task, 1:4, features = getTaskFeatureNames(task)))
expect_error(predict(model, subsetTask(task, 5:6)), "factor a has new levels c")
expect_error(resample(lrn, task, resinst), "factor a has new levels c")
lrn = makeLearner("classif.logreg", fix.factors.prediction = TRUE)
model = train(lrn, subsetTask(task, 1:4))
expect_warning(predict(model, subsetTask(task, 5:6)), "produced NAs because of new factor levels")
expect_warning(resample(lrn, task, resinst), "produced NAs because of new factor levels")
# do it manually
train_task = makeClassifTask("unseen.factors", data[1:4, ], "trg", fixup = "quiet") # quiet becasue
# we get dropped factors warning (which we want here)
model = train(lrn, train_task)
expect_warning(predict(model, newdata = data[5:6, ]), "produced NAs because of new factor levels")
})
|