File: test_base_spcv.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (36 lines) | stat: -rwxr-xr-x 1,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

test_that("Nested SpRepCV works without errors", {
  data(spatial.task, package = "mlr", envir = environment())

  lrn = makeLearner("classif.ranger",
    predict.type = "prob")

  ps = makeParamSet(makeNumericParam("mtry", lower = 3, upper = 3),
    makeNumericParam("num.trees", lower = 10, upper = 10))

  ctrl = makeTuneControlRandom(maxit = 1)
  inner = makeResampleDesc("SpCV", iters = 2)

  wrapper = makeTuneWrapper(lrn, resampling = inner, par.set = ps,
    control = ctrl, show.info = FALSE, measures = list(auc))

  outer = makeResampleDesc("SpRepCV", folds = 2, reps = 2)

  out = suppressMessages(resample(wrapper, spatial.task,
    resampling = outer, show.info = TRUE, measures = list(auc)))

  expect_atomic_vector(out$measures.test$auc, min.len = 4, max.len = 4)
})

test_that("SpRepCV works without errors", {
  data(spatial.task, package = "mlr", envir = environment())

  learner = makeLearner("classif.ranger", predict.type = "prob")

  resampling = makeResampleDesc("SpRepCV", fold = 2, reps = 2)

  out = resample(learner = learner, task = spatial.task,
    resampling = resampling, measures = list(auc))

  expect_atomic_vector(out$measures.test$auc, min.len = 4, max.len = 4)
})