1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
test_that("tune", {
requirePackagesOrSkip("e1071", default.method = "load")
cp = c(0.05, 0.9)
minsplit = 1:2
ps1 = makeParamSet(
makeDiscreteParam("cp", values = cp),
makeDiscreteParam("minsplit", values = minsplit)
)
ctrl = makeTuneControlGrid()
folds = 3
tr = e1071::tune.rpart(
formula = multiclass.formula, data = multiclass.df,
cp = cp, minsplit = minsplit,
tunecontrol = e1071::tune.control(sampling = "cross", cross = folds))
lrn = makeLearner("classif.rpart")
cv.instance = e1071CVToMlrCV(tr)
m1 = setAggregation(mmce, test.mean)
m2 = setAggregation(mmce, test.sd)
tr2 = tuneParams(lrn, multiclass.task, cv.instance,
par.set = ps1,
control = ctrl, measures = list(m1, m2))
pp = as.data.frame(tr2$opt.path)
for (i in seq_len(nrow(tr$performances))) {
cp = tr$performances[i, "cp"]
ms = tr$performances[i, "minsplit"]
j = which(pp$cp == cp & pp$minsplit == ms)
expect_equal(tr$performances[i, "error"], pp[j, "mmce.test.mean"])
expect_equal(tr$performances[i, "dispersion"], pp[j, "mmce.test.sd"])
}
# test printing
expect_output(print(ctrl), "Imputation value: <worst>")
ctrl$impute.val = 10
expect_output(print(ctrl), "Imputation value: 10")
expect_output(print(tr2), "mmce.test.mean=")
# check multiple measures and binary thresholding
rdesc = makeResampleDesc("Holdout")
ms = c("acc", "mmce", "timefit")
lrn2 = makeLearner("classif.rpart", predict.type = "prob")
ctrl = makeTuneControlGrid(tune.threshold = TRUE, tune.threshold.args = list(nsub = 2L))
tr2 = tuneParams(lrn2, binaryclass.task, rdesc,
par.set = ps1, control = ctrl,
measures = getDefaultMeasure(binaryclass.task))
expect_true(is.numeric(as.data.frame(tr2$opt.path)$threshold))
expect_true(isScalarNumeric(tr2$threshold))
# check multiclass thresholding
ctrl = makeTuneControlGrid(
tune.threshold = TRUE,
tune.threshold.args = list(control = list(maxit = 2)))
tr3 = tuneParams(lrn2, multiclass.task, rdesc, par.set = ps1, control = ctrl)
op.df = as.data.frame(tr3$opt.path)
op.df = op.df[, grepl("threshold_", colnames(op.df))]
expect_true(all(sapply(op.df, is.numeric)))
expect_true(is.numeric(tr3$threshold) && length(tr3$threshold) == 3L && !any(is.na(tr3$threshold)))
expect_error(tuneParams(lrn, multiclass.task, cv.instance,
par.set = makeParamSet(), control = ctrl,
measures = getDefaultMeasure(multiclass.task)))
})
test_that("tuning works with infeasible pars", {
# i am not sure if we want that behavior always but currently we impute Inf
# when we eval outside of constraints and there was a bug in that code so we
# test now
ps = makeParamSet(
makeDiscreteParam("cp", values = c(0.05, 2))
)
lrn = makeLearner("classif.rpart")
rdesc = makeResampleDesc("Holdout", split = 0.2)
ctrl = makeTuneControlGrid()
z = tuneParams(lrn, multiclass.task, rdesc,
par.set = ps, control = ctrl,
measures = getDefaultMeasure(multiclass.task))
d = as.data.frame(z$opt.path)
expect_true(is.finite(d[1L, "mmce.test.mean"]))
expect_true(is.na(d[1L, "error.message"]))
expect_true(is.na(d[2L, "mmce.test.mean"]))
expect_true(!is.na(d[2L, "error.message"]))
})
test_that("tuning works with errors", {
configureMlr(on.learner.error = "quiet")
ps = makeParamSet(
makeDiscreteParam("alpha", values = c(1, 0))
)
lrn = makeLearner("classif.__mlrmocklearners__2")
rdesc = makeResampleDesc("Holdout")
ctrl = makeTuneControlGrid()
z = tuneParams(lrn, multiclass.task, rdesc,
par.set = ps, control = ctrl,
measures = getDefaultMeasure(multiclass.task))
d = as.data.frame(z$opt.path)
expect_true(is.finite(d[1L, "mmce.test.mean"]))
expect_true(is.na(d[1L, "error.message"]))
expect_true(is.na(d[2L, "mmce.test.mean"]))
expect_true(grep("foo", d[2L, "error.message"]) == 1L)
configureMlr(on.learner.error = "stop")
})
# see bug in issue 219
test_that("tuning works with tuneThreshold and multiple measures", {
lrn = makeLearner("classif.rpart", predict.type = "prob")
rdesc = makeResampleDesc("Holdout")
ctrl = makeTuneControlRandom(tune.threshold = TRUE, maxit = 2L)
ps = makeParamSet(
makeNumericParam("cp", lower = 0.1, upper = 0.2)
)
res = tuneParams(lrn, binaryclass.task,
resampling = rdesc,
measures = list(mmce, auc), par.set = ps, control = ctrl)
expect_true(is.numeric(res$y) && length(res$y) == 2L && !any(is.na(res$y)))
# also check with infeasible stuff
ps = makeParamSet(
makeDiscreteParam("cp", values = c(0.1, -1))
)
ctrl = makeTuneControlGrid(tune.threshold = TRUE)
res = tuneParams(lrn, sonar.task,
resampling = rdesc, measures = list(mmce, auc),
par.set = ps, control = ctrl)
expect_true(is.numeric(res$y) && length(res$y) == 2L && !any(is.na(res$y)))
})
test_that("tuning allows usage of budget", {
lrn = makeLearner("classif.rpart", predict.type = "prob")
rdesc = makeResampleDesc("Holdout")
ctrl = makeTuneControlCMAES(budget = 18, lambda = 6, maxit = 3)
ps = makeParamSet(
makeNumericParam("cp", lower = 0.1, upper = 0.2),
makeIntegerParam("minsplit", lower = 1, upper = 10)
)
res = tuneParams(lrn, binaryclass.task, resampling = rdesc, par.set = ps, control = ctrl)
expect_true(is.numeric(res$y) && (length(res$y) == 1L) && !any(is.na(res$y)))
# also check with infeasible stuff
ps = makeParamSet(
makeDiscreteParam("cp", values = c(0.1, -1))
)
ctrl = makeTuneControlGrid(tune.threshold = TRUE, budget = 2L)
res = tuneParams(lrn, sonar.task,
resampling = rdesc, measures = list(mmce, auc),
par.set = ps, control = ctrl)
expect_true(is.numeric(res$y) && length(res$y) == 2L && !any(is.na(res$y)))
lrn = makeLearner("classif.rpart", predict.type = "prob")
rdesc = makeResampleDesc("Holdout")
ctrl = makeTuneControlRandom(tune.threshold = TRUE, maxit = NULL, budget = 3L)
ps = makeParamSet(
makeNumericParam("cp", lower = 0.1, upper = 0.2)
)
res = tuneParams(lrn, binaryclass.task,
resampling = rdesc, measures = list(mmce, auc),
par.set = ps, control = ctrl)
expect_true(is.numeric(res$y) && length(res$y) == 2L && !any(is.na(res$y)))
expect_identical(getOptPathLength(res$opt.path), 3L)
})
test_that("Learner defined with expression in param requires, see #369 and PH #52", {
ps = makeParamSet(
makeDiscreteLearnerParam(id = "a", values = c("x", "y")),
makeNumericLearnerParam(id = "b", lower = 0.0, upper = 1.0, requires = expression(a == "x"))
)
rdesc = makeResampleDesc("Holdout")
ctrl = makeTuneControlRandom()
res = tuneParams("classif.__mlrmocklearners__5", binaryclass.task, resampling = rdesc, par.set = ps, control = ctrl)
expect_class(res, "TuneResult")
})
test_that("tuning does not break with small discrete values, see bug in #1115", {
ctrl = makeTuneControlGrid()
ps = makeParamSet(
makeDiscreteParam("cp", values = c(1e-8, 1e-9))
)
# this next line created an exception in the bug
res = tuneParams("classif.rpart", multiclass.task, hout, par.set = ps, control = ctrl)
expect_class(res, "TuneResult")
})
test_that("tuning works with large param.sets", {
lrn = makeLearner("classif.__mlrmocklearners__5")
ctrl = makeTuneControlRandom(maxit = 3)
# create long list of learner params
ps.length = 200
long.learner.params = do.call(base::c, lapply(seq_len(ps.length), function(x) {
makeParamSet(makeIntegerLearnerParam(paste0("some.parameter", x), 1, 10))
}))
lrn$par.set = c(lrn$par.set, long.learner.params)
suppressMessages({
res = tuneParams(lrn, pid.task, cv5, par.set = long.learner.params, control = ctrl, show.info = TRUE)
})
expect_class(res, "TuneResult")
})
|