File: test_classif_OneR.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (37 lines) | stat: -rwxr-xr-x 1,199 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

test_that("classif_OneR", {
  requirePackagesOrSkip("RWeka", default.method = "load")

  parset.list = list(
    list(),
    list(B = 3)
  )

  old.predicts.list = list()
  old.probs.list = list()

  for (i in seq_along(parset.list)) {
    parset = parset.list[[i]]
    ctrl = do.call(RWeka::Weka_control, parset)
    m = RWeka::OneR(formula = multiclass.formula, data = multiclass.train,
      control = ctrl)
    p = predict(m, newdata = multiclass.test, type = "class")
    p2 = predict(m, newdata = multiclass.test, type = "prob")
    old.predicts.list[[i]] = p
    old.probs.list[[i]] = p2
  }

  testSimpleParsets("classif.OneR", multiclass.df, multiclass.target,
    multiclass.train.inds, old.predicts.list, parset.list)
  testProbParsets("classif.OneR", multiclass.df, multiclass.target,
    multiclass.train.inds, old.probs.list, parset.list)

  tt = function(formula, data, subset, ...) {
    RWeka::OneR(formula, data = data[subset, ], control = RWeka::Weka_control(...))
  }

  tp = function(model, newdata) predict(model, newdata, type = "class")

  testCVParsets("classif.OneR", multiclass.df, multiclass.target,
    tune.train = tt, tune.predict = tp, parset.list = parset.list)
})