File: test_classif_mda.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (44 lines) | stat: -rwxr-xr-x 1,441 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

test_that("classif_mda", {
  requirePackagesOrSkip("mda")

  parset.list1 = list(
    list(start.method = "lvq"),
    list(start.method = "lvq", subclasses = 2),
    list(start.method = "lvq", subclasses = 3)
  )

  parset.list2 = list(
    list(),
    list(start.method = "lvq", subclasses = 2),
    list(start.method = "lvq", subclasses = 3)
  )

  old.predicts.list = list()
  old.probs.list = list()

  for (i in seq_along(parset.list1)) {
    parset = parset.list1[[i]]
    pars = list(formula = multiclass.formula, data = multiclass.train)
    pars = c(pars, parset)
    set.seed(getOption("mlr.debug.seed"))
    m = do.call(mda::mda, pars)
    p = predict(m, newdata = multiclass.test)
    p2 = predict(m, newdata = multiclass.test, type = "posterior")
    old.predicts.list[[i]] = p
    old.probs.list[[i]] = p2
  }

  testSimpleParsets("classif.mda", multiclass.df, multiclass.target,
    multiclass.train.inds, old.predicts.list, parset.list2)
  testProbParsets("classif.mda", multiclass.df, multiclass.target,
    multiclass.train.inds, old.probs.list, parset.list2)

  tt = mda::mda
  tp = function(model, newdata) predict(model, newdata)

  testCVParsets("classif.mda", multiclass.df, multiclass.target,
    tune.train = tt, tune.predict = tp, parset.list = parset.list1)
  testCV("classif.mda", multiclass.df, multiclass.target, tune.train = tt,
    tune.predict = tp, parset = list(start.method = "lvq", subclasses = 17))
})