File: test_classif_saeDNN.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (52 lines) | stat: -rwxr-xr-x 1,608 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

test_that("classif_saeDNN", {
  requirePackagesOrSkip("deepnet", default.method = "load")

  # test with empty empty paramset
  # neuralnet is not dealing with formula with `.` well
  x = data.matrix(binaryclass.train[, -ncol(binaryclass.train)])
  y = binaryclass.train[, ncol(binaryclass.train)]

  dict = sort(unique(y))
  onehot = matrix(0, length(y), length(dict))
  for (i in seq_along(dict)) {
    ind = which(y == dict[i])
    onehot[ind, i] = 1
  }

  m = suppressMessages(deepnet::sae.dnn.train(x = x, y = onehot, output = "softmax"))
  p = deepnet::nn.predict(
    m,
    data.matrix(binaryclass.test[, -ncol(binaryclass.test)]))
  colnames(p) = binaryclass.class.levs
  p = as.factor(colnames(p)[max.col(p)])

  testSimple("classif.saeDNN", binaryclass.df, binaryclass.target,
    binaryclass.train.inds, p,
    parset = list())


  # test with params passed
  capture.output({
    x = data.matrix(binaryclass.train[, -ncol(binaryclass.train)])
    y = binaryclass.train[, ncol(binaryclass.train)]

    dict = sort(unique(y))
    onehot = matrix(0, length(y), length(dict))
    for (i in seq_along(dict)) {
      ind = which(y == dict[i])
      onehot[ind, i] = 1
    }

    m = suppressMessages(deepnet::sae.dnn.train(x = x, y = onehot, hidden = 7, output = "softmax"))
    p = deepnet::nn.predict(
      m,
      data.matrix(binaryclass.test[, -ncol(binaryclass.test)]))
    colnames(p) = binaryclass.class.levs
    p = as.factor(colnames(p)[max.col(p)])
  })

  testSimple("classif.saeDNN", binaryclass.df, binaryclass.target,
    binaryclass.train.inds, p,
    parset = list(hidden = 7))
})