File: test_classif_sparseLDA.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (36 lines) | stat: -rwxr-xr-x 1,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

test_that("classif_sparseLDA", {
  suppressMessages(requirePackagesOrSkip(c("sparseLDA", "MASS", "elasticnet")))

  parset.list = list(
    list(),
    list(lambda = 1, maxIte = 50),
    list(lambda = 2, maxIte = 60),
    list(tol = 1e-4, maxIte = 100),
    list(tol = 1e-5, lambda = 0.5),
    list(tol = 3e-5, lambda = 0.8, maxIte = 150)
  )

  old.predicts.list = list()
  old.probs.list = list()

  for (i in seq_along(parset.list)) {
    parset = parset.list[[i]]
    target.col = which(colnames(multiclass.train) == multiclass.target)
    X = multiclass.train[, -target.col]
    y = multiclass.train[, multiclass.target]
    lvls = unique(as.character(y))
    y = sapply(lvls, function(lvl) as.integer(as.character(y) == lvl))
    pars = c(list(x = X, y = y), parset)
    m = do.call(sparseLDA::sda, pars)
    old.predicts.list[[i]] = sparseLDA:::predict.sda(m,
      newdata = subset(multiclass.test, select = m$varNames))$class
    old.probs.list[[i]] = sparseLDA:::predict.sda(m,
      newdata = subset(multiclass.test, select = m$varNames))$posterior
  }

  testSimpleParsets("classif.sparseLDA", multiclass.df, multiclass.target,
    multiclass.train.inds, old.predicts.list, parset.list)
  testProbParsets("classif.sparseLDA", multiclass.df, multiclass.target,
    multiclass.train.inds, old.probs.list, parset.list)
})