File: test_featsel_filters.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (152 lines) | stat: -rw-r--r-- 5,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# this is a long test suite that is used to test the validity of ALL filters

test_that("filterFeatures 1", {

  # FSelector not avail
  skip_on_os("windows")

  # Loop through all filters
  # univariate.model.score, permutation.importance and auc are handled extra test below
  # 'univariate', 'randomForest_importance' and 'rfsrc_var.select' are deprecated

  filter.list = listFilterMethods(desc = FALSE, tasks = TRUE, features = FALSE)
  filter.list.classif = as.character(filter.list$id)[filter.list$task.classif]
  filter.list.classif = setdiff(filter.list.classif, c(
    "univariate.model.score", "permutation.importance", "auc",
    "univariate"))
  for (filter in filter.list.classif) {
    filterFeatures(task = multiclass.task, method = filter, perc = 0.5)
  }
  filter.list.regr = as.character(filter.list$id)[!filter.list$task.classif &
    filter.list$task.regr]
  for (filter in filter.list.regr) {
    filterFeatures(task = regr.num.task, method = filter, perc = 0.5)
  }

  fv = generateFilterValuesData(task = multiclass.task,
    method = "univariate.model.score", perc = -1.5,
    perf.learner = makeLearner("classif.rpart"), measures = mmce)
  expect_class(fv, classes = "FilterValues")
  expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
    len = getTaskNFeats(multiclass.task))
})

test_that("filterFeatures - permutation imp", {

  # extra test of the permutation.importance filter
  fv = generateFilterValuesData(task = multiclass.task,
    method = "permutation.importance",
    imp.learner = makeLearner("classif.rpart"),
    measure = acc,
    contrast = function(x, y) abs(x - y),
    aggregation = median,
    nmc = 2L)
  expect_class(fv, classes = "FilterValues")
  expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
    len = getTaskNFeats(multiclass.task))
})

test_that("filterFeatures: auc", {

  # extra test for auc filter (two class dataset)
  toy.data = data.frame(
    Class = factor(c(1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L)),
    V1 = 1:8,
    V2 = 8:1,
    V3 = c(5L, 1L, 6L, 7L, 2L, 8L, 3L, 4L),
    V4 = c(1L, 5L, 2L, 3L, 6L, 4L, 7L, 8L),
    V5 = c(1L, 2L, 3L, 5L, 4L, 7L, 6L, 8L))
  toy.task = makeClassifTask("toy.task", data = toy.data, target = "Class",
    positive = 1L)

  fv = generateFilterValuesData(toy.task, method = "auc")
  expect_class(fv, classes = "FilterValues")
  expect_numeric(fv$data$value, any.missing = FALSE, all.missing = FALSE,
    len = getTaskNFeats(toy.task))
  expect_equal(fv$data$value, c(0.25, 0.25, 0.5, 0.5, 0.125))
})

test_that("Custom threshold function for filtering works correctly", {
  biggest_gap = function(values, diff) {
    gap_size = 0
    gap_location = 0

    for (i in (diff + 1):length(values)) {
      gap = values[[i - diff]] - values[[i]]
      if (gap > gap_size) {
        gap_size = gap
        gap_location = i - 1
      }
    }
    return(gap_location)
  }

  ftask = filterFeatures(task = multiclass.task,
    method = "variance",
    fun = biggest_gap,
    fun.args = list("diff" = 1)
  )
  feats = getTaskFeatureNames(ftask)
  expect_equal(feats, "Petal.Length")
})

test_that("ensemble filters subset the task correctly", {

  # expectation for all filters was checked manually just right after the
  # internal aggregation (in filterFeatures.R)

  task.filtered = filterFeatures(bh.task,
    method = "E-mean",
    abs = 5,
    base.methods = c("univariate.model.score", "praznik_CMIM"))
  expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
    "ptratio", "lstat"))

  task.filtered = filterFeatures(bh.task,
    method = "E-min",
    abs = 5,
    base.methods = c("univariate.model.score", "praznik_CMIM"))
  expect_equal(getTaskFeatureNames(task.filtered), c("nox", "rm", "tax",
    "ptratio", "lstat"))

  task.filtered = filterFeatures(bh.task,
    method = "E-max",
    abs = 5,
    base.methods = c("univariate.model.score", "praznik_CMIM"))
  expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
    "ptratio", "lstat"))

  task.filtered = filterFeatures(bh.task,
    method = "E-median",
    abs = 5,
    base.methods = c("univariate.model.score", "praznik_CMIM"))
  expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
    "ptratio", "lstat"))

  task.filtered = filterFeatures(bh.task,
    method = "E-Borda",
    abs = 5,
    base.methods = c("univariate.model.score", "praznik_CMIM"))
  expect_equal(getTaskFeatureNames(task.filtered), c("indus", "nox", "rm",
    "ptratio", "lstat"))
})

test_that("Thresholding works with ensemble filters", {
  foo = filterFeatures(iris.task, method = "E-min",
    base.methods = c("FSelectorRcpp_gain.ratio",
      "FSelectorRcpp_information.gain"),
    thresh = 2)

  expect_equal(getTaskNFeats(foo), 3)
})

test_that("Ensemble filters can deal with non-unique base methods", {
  lda = makeLearner(cl = "classif.lda", id = "lda_class", predict.type = "response")
  ff = filterFeatures(multiclass.task,
    method = "E-mean",
    base.methods = list("filter1" = "univariate.model.score", "filter2" = "univariate.model.score"),
    abs = 2,
    more.args = list("filter1" = list(perf.learner = lda), "filter2" = list(perf.learner = lda))
  )
  expect_equal(getTaskFeatureNames(ff), c("Petal.Length", "Petal.Width"))
})