1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
test_that("parallel resampling", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode, level) {
lrn = makeLearner("classif.rpart")
rdesc = makeResampleDesc("CV", iters = 2L)
on.exit(parallelStop())
parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
r = resample(lrn, multiclass.task, rdesc)
expect_true(!is.na(r$aggr[1]))
}
if (Sys.info()["sysname"] != "Windows") {
doit("mpi", as.character(NA))
doit("mpi", "mlr.resample")
doit("mpi", "mlr.tuneParams")
}
})
test_that("parallel tuning", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode, level) {
lrn = makeLearner("classif.rpart")
rdesc = makeResampleDesc("CV", iters = 2L)
ps = makeParamSet(makeDiscreteParam("cp", values = c(0.01, 0.05)))
ctrl = makeTuneControlGrid()
on.exit(parallelStop())
parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
res = tuneParams(lrn, multiclass.task, rdesc, par.set = ps, control = ctrl)
expect_true(!is.na(res$y))
}
if (Sys.info()["sysname"] != "Windows") {
doit("mpi", as.character(NA))
doit("mpi", "mlr.resample")
doit("mpi", "mlr.tuneParams")
}
})
test_that("parallel featsel", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode, level) {
lrn = makeLearner("classif.rpart")
rdesc = makeResampleDesc("CV", iters = 2L)
ctrl = makeFeatSelControlRandom(maxit = 2L)
on.exit(parallelStop())
parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
res = selectFeatures(lrn, multiclass.task, rdesc, control = ctrl)
expect_true(!is.na(res$y))
}
if (Sys.info()["sysname"] != "Windows") {
doit("mpi", as.character(NA))
doit("mpi", "mlr.resample")
doit("mpi", "mlr.tuneParams")
}
})
test_that("parallel exporting of options works", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode, level) {
data = iris
data[, 1] = 1 # this is going to crash lda
task = makeClassifTask(data = data, target = "Species")
lrn = makeLearner("classif.lda")
rdesc = makeResampleDesc("CV", iters = 3)
configureMlr(on.learner.error = "warn")
on.exit(configureMlr(on.learner.error = "stop"))
parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
on.exit(parallelStop())
# if the option is not exported, we cannot pass the next line without error
# on slave
r = resample(lrn, task, rdesc)
}
doit("socket", as.character(NA))
# make sure
configureMlr(on.learner.error = "stop")
})
test_that("parallel partial dependence", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode) {
lrn = makeLearner("regr.rpart")
fit = train(lrn, regr.task)
on.exit(parallelStop())
parallelStart(mode = mode, cpus = 2L, show.info = FALSE)
pd = generatePartialDependenceData(fit, regr.task, "lstat")
expect_true(ncol(pd$data) == 2L)
}
if (Sys.info()["sysname"] != "Windows") {
doit("mpi")
}
})
test_that("parallel ensembles", {
skip_on_os("mac")
skip_on_ci()
skip_on_cran()
doit = function(mode, level) {
on.exit(parallelStop())
parallelStart(mode = mode, cpus = 2L, show.info = FALSE)
## bagging wrapper
lrn = makeBaggingWrapper(makeLearner("regr.rpart"), bw.iters = 2L)
fit = train(lrn, regr.task)
models = getLearnerModel(fit, more.unwrap = TRUE)
expect_equal(length(models), 2L)
expect_equal(class(models[[1]]), "rpart")
p = predict(fit, regr.task)
## multiclass wrapper
lrn = makeMulticlassWrapper(makeLearner("classif.rpart"))
fit = train(lrn, multiclass.task)
models = getLearnerModel(fit)
expect_equal(length(models), length(getTaskClassLevels(multiclass.task)))
levs = do.call("rbind", extractSubList(models, "factor.levels"))
expect_equal(unique(levs[, 1]), "-1")
expect_equal(unique(levs[, 2]), "1")
p = predict(fit, multiclass.task)
## overbagging wrapper
lrn = makeOverBaggingWrapper(makeLearner("classif.rpart"), 2L)
fit = train(lrn, binaryclass.task)
models = getLearnerModel(fit)
expect_equal(length(models), 2L)
p = predict(fit, binaryclass.task) ## calls predictHomogeneousEnsemble
## costsensregrwrapper
lrn = makeCostSensRegrWrapper(makeLearner("regr.rpart"))
fit = train(lrn, costsens.task)
models = getLearnerModel(fit)
expect_equal(length(models), ncol(getTaskCosts(costsens.task)))
p = predict(fit, costsens.task)
## MultilabelBinaryRelevanceWrapper
lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
lrn = setPredictType(lrn, "prob")
fit = train(lrn, multilabel.task)
p = predict(fit, multilabel.task)
}
## CostSensWeightedPairsWrapper
if (Sys.info()["sysname"] != "Windows") {
doit("mpi", "mlr.ensemble")
}
})
|