File: test_parallel_mpi.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (160 lines) | stat: -rwxr-xr-x 4,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

test_that("parallel resampling", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()

  doit = function(mode, level) {
    lrn = makeLearner("classif.rpart")
    rdesc = makeResampleDesc("CV", iters = 2L)
    on.exit(parallelStop())
    parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
    r = resample(lrn, multiclass.task, rdesc)
    expect_true(!is.na(r$aggr[1]))
  }
  if (Sys.info()["sysname"] != "Windows") {
    doit("mpi", as.character(NA))
    doit("mpi", "mlr.resample")
    doit("mpi", "mlr.tuneParams")
  }
})

test_that("parallel tuning", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()

  doit = function(mode, level) {
    lrn = makeLearner("classif.rpart")
    rdesc = makeResampleDesc("CV", iters = 2L)
    ps = makeParamSet(makeDiscreteParam("cp", values = c(0.01, 0.05)))
    ctrl = makeTuneControlGrid()
    on.exit(parallelStop())
    parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
    res = tuneParams(lrn, multiclass.task, rdesc, par.set = ps, control = ctrl)
    expect_true(!is.na(res$y))
  }
  if (Sys.info()["sysname"] != "Windows") {
    doit("mpi", as.character(NA))
    doit("mpi", "mlr.resample")
    doit("mpi", "mlr.tuneParams")
  }
})

test_that("parallel featsel", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()
  doit = function(mode, level) {
    lrn = makeLearner("classif.rpart")
    rdesc = makeResampleDesc("CV", iters = 2L)
    ctrl = makeFeatSelControlRandom(maxit = 2L)
    on.exit(parallelStop())
    parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
    res = selectFeatures(lrn, multiclass.task, rdesc, control = ctrl)
    expect_true(!is.na(res$y))
  }
  if (Sys.info()["sysname"] != "Windows") {
    doit("mpi", as.character(NA))
    doit("mpi", "mlr.resample")
    doit("mpi", "mlr.tuneParams")
  }
})

test_that("parallel exporting of options works", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()

  doit = function(mode, level) {

    data = iris
    data[, 1] = 1 # this is going to crash lda
    task = makeClassifTask(data = data, target = "Species")
    lrn = makeLearner("classif.lda")
    rdesc = makeResampleDesc("CV", iters = 3)
    configureMlr(on.learner.error = "warn")
    on.exit(configureMlr(on.learner.error = "stop"))
    parallelStart(mode = mode, cpus = 2L, level = level, show.info = FALSE)
    on.exit(parallelStop())
    # if the option is not exported, we cannot pass the next line without error
    # on slave
    r = resample(lrn, task, rdesc)
  }
  doit("socket", as.character(NA))
  # make sure
  configureMlr(on.learner.error = "stop")
})

test_that("parallel partial dependence", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()

  doit = function(mode) {
    lrn = makeLearner("regr.rpart")
    fit = train(lrn, regr.task)
    on.exit(parallelStop())
    parallelStart(mode = mode, cpus = 2L, show.info = FALSE)
    pd = generatePartialDependenceData(fit, regr.task, "lstat")
    expect_true(ncol(pd$data) == 2L)
  }
  if (Sys.info()["sysname"] != "Windows") {
    doit("mpi")
  }
})

test_that("parallel ensembles", {
  skip_on_os("mac")
  skip_on_ci()
  skip_on_cran()

  doit = function(mode, level) {

    on.exit(parallelStop())
    parallelStart(mode = mode, cpus = 2L, show.info = FALSE)

    ## bagging wrapper
    lrn = makeBaggingWrapper(makeLearner("regr.rpart"), bw.iters = 2L)
    fit = train(lrn, regr.task)
    models = getLearnerModel(fit, more.unwrap = TRUE)
    expect_equal(length(models), 2L)
    expect_equal(class(models[[1]]), "rpart")
    p = predict(fit, regr.task)

    ## multiclass wrapper
    lrn = makeMulticlassWrapper(makeLearner("classif.rpart"))
    fit = train(lrn, multiclass.task)
    models = getLearnerModel(fit)
    expect_equal(length(models), length(getTaskClassLevels(multiclass.task)))
    levs = do.call("rbind", extractSubList(models, "factor.levels"))
    expect_equal(unique(levs[, 1]), "-1")
    expect_equal(unique(levs[, 2]), "1")
    p = predict(fit, multiclass.task)

    ## overbagging wrapper
    lrn = makeOverBaggingWrapper(makeLearner("classif.rpart"), 2L)
    fit = train(lrn, binaryclass.task)
    models = getLearnerModel(fit)
    expect_equal(length(models), 2L)
    p = predict(fit, binaryclass.task) ## calls predictHomogeneousEnsemble

    ## costsensregrwrapper
    lrn = makeCostSensRegrWrapper(makeLearner("regr.rpart"))
    fit = train(lrn, costsens.task)
    models = getLearnerModel(fit)
    expect_equal(length(models), ncol(getTaskCosts(costsens.task)))
    p = predict(fit, costsens.task)

    ## MultilabelBinaryRelevanceWrapper
    lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
    lrn = setPredictType(lrn, "prob")
    fit = train(lrn, multilabel.task)
    p = predict(fit, multilabel.task)
  }

  ## CostSensWeightedPairsWrapper
  if (Sys.info()["sysname"] != "Windows") {
    doit("mpi", "mlr.ensemble")
  }
})