File: test_regr_nnet.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (30 lines) | stat: -rwxr-xr-x 999 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

test_that("regr_nnet", {
  requirePackagesOrSkip("nnet", default.method = "load")

  # test with empty paramset
  capture.output({
    m = nnet::nnet(regr.formula, size = 3L, data = regr.train, linout = TRUE)
    p = predict(m, newdata = regr.test)[, 1L]
    print(p)
  })
  testSimple("regr.nnet", regr.df, regr.target, regr.train.inds, p,
    parset = list())

  # test with params passed
  capture.output({
    m = nnet::nnet(regr.formula, size = 7L, data = regr.train, linout = TRUE)
    p = predict(m, newdata = regr.test)[, 1L]
    print(p)
  })
  testSimple("regr.nnet", regr.df, regr.target, regr.train.inds, p,
    parset = list(size = 7L))

  # tt = function (formula, data, subset = 1:150, ...) {
  # nnet::nnet(formula, data = data[subset,], size = 3L, maxit = 50L)
  # }
  # tp = function(model, newdata) as.factor(predict(model, newdata, type = "class"))

  # testCV("regr.nnet", regr.df, regr.target, tune.train = tt, tune.predict = tp,
  # parset = list(size = 3L, maxit = 50L))
})