File: test_tune_ModelMultiplexer.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (222 lines) | stat: -rwxr-xr-x 7,465 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

test_that("makeModelMultiplexerParamSet works", {
  bls = list(
    makeLearner("classif.ksvm"),
    makeLearner("classif.randomForest")
  )

  lrn = makeModelMultiplexer(bls)

  ps1 = makeModelMultiplexerParamSet(
    lrn,
    makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 2^x),
    makeIntegerParam("ntree", lower = 1L, upper = 50L)
  )

  ps2 = makeModelMultiplexerParamSet(lrn,
    classif.ksvm = makeParamSet(makeNumericParam("sigma",
      lower = -10,
      upper = 10, trafo = function(x) 2^x)),
    classif.randomForest = makeParamSet(makeIntegerParam("ntree",
      lower = 1L,
      upper = 50L))
  )

  ps3 = makeParamSet(
    makeDiscreteParam("selected.learner", values = extractSubList(bls, "id")),
    makeNumericParam("classif.ksvm.sigma",
      lower = -10, upper = 10,
      trafo = function(x) 2^x,
      requires = quote(selected.learner == "classif.ksvm")),
    makeIntegerParam("classif.randomForest.ntree",
      lower = 1L, upper = 50L,
      requires = quote(selected.learner == "classif.randomForest"))
  )

  expect_equal(ps1, ps2)
  expect_equal(ps2, ps3)
  expect_equal(ps1, ps3)
})

# this is more or less a test for BaseEnsemble, that hyperpars work and so on
test_that("ModelMultiplexer basic stuff works", {
  lrn = makeModelMultiplexer(c("classif.lda", "classif.rpart"))
  expect_equal(class(lrn), c("ModelMultiplexer", "BaseEnsemble", "Learner"))

  # check hyper par setting and so on
  lrn2 = setHyperPars(lrn,
    selected.learner = "classif.rpart",
    classif.rpart.minsplit = 10000L)
  xs = getHyperPars(lrn2)
  expect_true(setequal(names(xs), c(
    "selected.learner",
    "classif.rpart.minsplit", "classif.rpart.xval")))
  expect_equal(xs$classif.rpart.minsplit, 10000L)
  mod = train(lrn2, task = binaryclass.task)
  expect_equal(
    getLearnerModel(mod, more.unwrap = TRUE)$control$minsplit,
    10000L)

  # check removal
  lrn3 = removeHyperPars(lrn2, "classif.rpart.minsplit")
  xs = getHyperPars(lrn3)
  expect_true(setequal(names(xs), c("selected.learner", "classif.rpart.xval")))

  # check predict.type
  lrn2 = setPredictType(lrn, "prob")
  mod = train(lrn2, task = binaryclass.task)
  p = predict(mod, task = binaryclass.task)
  expect_numeric(getPredictionProbabilities(p),
    any.missing = FALSE, lower = 0,
    upper = 1)
})

test_that("FailureModel works", {
  lrn = list(
    makeLearner("classif.__mlrmocklearners__2",
      config = list(on.learner.error = "warn")),
    makeLearner("classif.rpart", config = list(on.learner.error = "warn"))
  )
  lrn = makeModelMultiplexer(lrn)

  lrn = setHyperPars(lrn, classif.__mlrmocklearners__2.alpha = 1)
  mod = train(lrn, task = iris.task)
  expect_false(isFailureModel(mod))

  lrn = setHyperPars(lrn, classif.__mlrmocklearners__2.alpha = 0)
  expect_warning({
    mod = train(lrn, task = iris.task)
  }, "foo")
  expect_true(isFailureModel(mod))

  tmp = getMlrOptions()$on.learner.error
  configureMlr(on.learner.error = "warn")
  lrn = setHyperPars(lrn, classif.__mlrmocklearners__2.alpha = 1)
  lrn = removeHyperPars(lrn, "selected.learner")
  expect_warning({
    mod = train(lrn, task = iris.task)
  })
  expect_true(isFailureModel(mod))
  configureMlr(on.learner.error = tmp)
})

test_that("ModelMultiplexer tuning", {
  lrn = makeModelMultiplexer(c("classif.knn", "classif.rpart"))
  rdesc = makeResampleDesc("CV", iters = 2L)

  tune.ps = makeModelMultiplexerParamSet(
    lrn,
    makeIntegerParam("minsplit", lower = 1, upper = 50))
  # tune with random
  ctrl = makeTuneControlRandom(maxit = 4L)
  res = tuneParams(lrn, binaryclass.task, rdesc,
    par.set = tune.ps,
    control = ctrl)
  expect_true(setequal(class(res), c("TuneResult", "OptResult")))
  y = getOptPathY(res$opt.path)
  expect_true(all(!is.na(y)))
  expect_true(all(is.finite(y)))
  # tune with irace
  task = subsetTask(binaryclass.task, subset = c(1:20, 150:170))
  ctrl = makeTuneControlIrace(
    maxExperiments = 40L, nbIterations = 2L,
    minNbSurvival = 1L)
  res = tuneParams(lrn, task, rdesc, par.set = tune.ps, control = ctrl)
  expect_true(setequal(class(res), c("TuneResult", "OptResult")))
  y = getOptPathY(res$opt.path)
  expect_true(all(!is.na(y)))
  expect_true(all(is.finite(y)))
})

# we had bug here, see issue #609
test_that("ModelMultiplexer inherits predict.type from base learners", {
  base.learners = list(
    makeLearner("classif.ksvm", predict.type = "prob"),
    makeLearner("classif.randomForest", predict.type = "prob")
  )
  learner = makeModelMultiplexer(base.learners)
  expect_equal(learner$predict.type, "prob")
  # now lets see that the next code runs and does not complain about matrix
  # output for base learner predict output
  r = holdout(learner, binaryclass.task)

  # now check that we can tune the threshold
  ps = makeModelMultiplexerParamSet(
    learner,
    makeDiscreteParam("C", 1),
    makeDiscreteParam("mtry", c(2, 3))
  )
  rdesc = makeResampleDesc("Holdout")
  ctrl = makeTuneControlGrid(tune.threshold = TRUE)
  res = tuneParams(learner, binaryclass.task,
    resampling = rdesc, par.set = ps,
    control = ctrl)
})

# we had bug here, see issue #647
test_that("ModelMultiplexer passes on hyper pars in predict", {
  requirePackagesOrSkip("glmnet")
  base.learners = list(
    makeLearner("regr.glmnet"),
    makeLearner("regr.rpart")
  )
  learner = makeModelMultiplexer(base.learners)
  expect_equal(learner$predict.type, "response")
  r = holdout(learner, regr.task)
})

# issue #707
test_that("ModelMultiplexer handles tasks with no features", {
  requirePackagesOrSkip("glmnet")
  base.learners = list(
    makeLearner("regr.glmnet"),
    makeLearner("regr.rpart")
  )
  learner = makeModelMultiplexer(base.learners)
  task = subsetTask(bh.task, features = character(0))
  m = train(learner, task)
  expect_s3_class(m$learner.model, "NoFeaturesModel")
  p = predict(m, task)
  expect_s3_class(p$data, "data.frame")
  expect_true(all(p$data$response == mean(p$data$response)))
})

# issue #760
test_that("ModelMultiplexer passes on hyper pars in predict with both", {
  test.ps = makeRLearnerClassif("test.ps", character(0),
    makeParamSet(
      makeIntegerLearnerParam("tpTRAIN", when = "train"),
      makeIntegerLearnerParam("tpPREDICT", when = "predict"),
      makeIntegerLearnerParam("tpBOTH", when = "both")),
    properties = c("numerics", "twoclass"))
  test.ps$fix.factors.prediction = TRUE

  opts = NULL
  trainLearner.test.ps = function(.learner, .task, .subset, .weights = NULL,
    ...) {
    opts <<- list(...) # nolint
    # the following to make the type checking happy
    list(dummy = getTaskData(.task, .subset)[[getTaskTargetNames(.task)[1]]][1])
  }
  registerS3method("trainLearner", "test.ps", trainLearner.test.ps)

  predictLearner.test.ps = function(.learner, .model, .newdata, ...) {
    opts <<- list(...) # nolint
    rep(.model$learner.model$dummy, nrow(.newdata)) # just do something
  }
  registerS3method("predictLearner", "test.ps", predictLearner.test.ps)

  test.ps.mm = makeModelMultiplexer(list(test.ps))
  test.ps.mm.args = setHyperPars(test.ps.mm,
    test.ps.tpTRAIN = 1,
    test.ps.tpPREDICT = 2, test.ps.tpBOTH = 3)
  trained = train(test.ps.mm.args, pid.task)
  expect_false(is.null(opts$tpBOTH))
  expect_false(is.null(opts$tpTRAIN))
  expect_true(is.null(opts$tpPREDICT))

  predicted = predict(trained, pid.task)
  expect_false(is.null(opts$tpBOTH))
  expect_true(is.null(opts$tpTRAIN))
  expect_false(is.null(opts$tpPREDICT))
})