File: test_tune_tuneParamsMultiCrit.R

package info (click to toggle)
r-cran-mlr 2.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,392 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (245 lines) | stat: -rw-r--r-- 9,788 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

test_that("tuneParamsMultiCrit", {
  requirePackagesOrSkip("emoa", default.method = "load")

  lrn = makeLearner("classif.rpart")
  rdesc = makeResampleDesc("Holdout")
  ps = makeParamSet(
    makeIntegerParam("minsplit", lower = 1, upper = 50)
  )
  ctrl = makeTuneMultiCritControlRandom(maxit = 2)
  expect_error(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc,
    par.set = ps, measures = list(mmce), control = ctrl),
  ".* Must have length >= 2, but has length 1.")

  mycheck = function(res, k) {
    expect_output(print(res), "Points on front")
    expect_true(is.integer(res$ind))
    expect_true(is.list(res$x))
    expect_true(is.matrix(res$y))
    expect_equal(getOptPathLength(res$opt.path), k)
  }

  # random search
  ctrl = makeTuneMultiCritControlRandom(maxit = 2)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl)
  mycheck(res, 2)
  # and check plotting
  print(plotTuneMultiCritResult(res, path = TRUE))
  print(plotTuneMultiCritResult(res, path = FALSE))

  # grid search
  ctrl = makeTuneMultiCritControlGrid(resolution = 2L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl)
  mycheck(res, 2)

  # nsga2
  ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl)
  mycheck(res, 8L)

  # MBO
  ctrl = makeTuneMultiCritControlMBO(2L, budget = 4L * length(ps$pars) + 1L)
  # suppressed warnings: "generateDesign could only produce 50 points instead of
  # 1000!"
  res = suppressWarnings(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl))
  mycheck(res, 4L * length(ps$pars) + 1L)

  # MBO with mbo.control
  # Size of init design is 4 * length(ps$pars) by default of mlrMBO
  mbo.control = mlrMBO::makeMBOControl(n.objectives = 2L)
  mbo.control = mlrMBO::setMBOControlInfill(mbo.control,
    crit = mlrMBO::makeMBOInfillCritDIB())
  mbo.control = mlrMBO::setMBOControlMultiObj(mbo.control)
  mbo.control = mlrMBO::setMBOControlTermination(mbo.control, iters = 1)
  ctrl = makeTuneMultiCritControlMBO(mbo.control = mbo.control)
  # suppressed warnings: "generateDesign could only produce 50 points instead of
  # 1000!"
  res = suppressWarnings(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc,
    par.set = ps, measures = list(tpr, fpr), control = ctrl))
  mycheck(res, 4L * length(ps$pars) + 1L)

  # MBO with dependent param set
  lrn = makeLearner("classif.ksvm")
  ps = makeParamSet(makeDiscreteParam("kernel", c("polydot", "rbfdot")),
    makeNumericParam("sigma", lower = -12, upper = 12,
      trafo = function(x) 2^x, requires = quote(kernel == "rbfdot")))
  ctrl = makeTuneMultiCritControlMBO(2L, budget = 4L * length(ps$pars) + 1L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl)
  mycheck(res, 4L * length(ps$pars) + 1L)
})


test_that("tuneParamsMultiCrit works with low number of evals and dependencies", {

  requirePackagesOrSkip("emoa", default.method = "load")

  # we had a bug here triggered thru code in PH
  ps = makeParamSet(
    makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
    makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")),
    makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x,
      requires = quote(kernel == "rbfdot")),
    makeIntegerParam("degree", lower = 2L, upper = 5L,
      requires = quote(kernel == "polydot"))
  )
  ctrl = makeTuneMultiCritControlRandom(maxit = 1L)
  rdesc = makeResampleDesc("Holdout")
  expect_silent(tuneParamsMultiCrit("classif.ksvm", sonar.task, rdesc,
    par.set = ps, measures = list(tpr, fpr), control = ctrl))
})

# FIXME: I am not sure how we can check wich value is imputed for the optimizer?
test_that("y imputing works", {
  requirePackagesOrSkip("emoa", default.method = "load")

  configureMlr(on.learner.error = "quiet")
  lrn = makeLearner("classif.__mlrmocklearners__2")
  rdesc = makeResampleDesc("Holdout")
  ps = makeParamSet(
    makeNumericParam("alpha", lower = 0, upper = 1)
  )
  ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl)
  ctrl = makeTuneMultiCritControlNSGA2(impute.val = c(100, 100), popsize = 4L,
    generations = 1L)
  expect_silent(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl))

  configureMlr(on.learner.error = "stop")
})

test_that("tuneParamsMultiCrit with budget", {
  requirePackagesOrSkip("emoa", default.method = "load")

  lrn = makeLearner("classif.rpart")
  rdesc = makeResampleDesc("Holdout")
  ps = makeParamSet(
    makeNumericParam("cp", lower = 0.001, upper = 1),
    makeIntegerParam("minsplit", lower = 1, upper = 50)
  )

  mycheck = function(ctrl, expected.budget) {
    if ("TuneMultiCritControlGrid" %in% class(ctrl)) {
      if (!is.null(ctrl$budget)) {
        expect_equal(ctrl$budget, expected.budget)
      }
    } else {
      expect_equal(ctrl$budget, expected.budget)
    }
    res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
      measures = list(tpr, fpr), control = ctrl)
    expect_equal(getOptPathLength(res$opt.path), expected.budget)
  }

  # random search
  ctrl = makeTuneMultiCritControlRandom(maxit = 3L)
  mycheck(ctrl, ctrl$extra.args$maxit)
  ctrl = makeTuneMultiCritControlRandom(maxit = 3L, budget = 3L)
  mycheck(ctrl, ctrl$extra.args$maxit)
  expect_error(makeTuneMultiCritControlRandom(maxit = 3L, budget = 5L),
    "The parameters .* differ.")

  # grid search
  ctrl = makeTuneMultiCritControlGrid(resolution = 3)
  mycheck(ctrl, ctrl$extra.args$resolution^2)
  ctrl = makeTuneMultiCritControlGrid(resolution = 3, budget = 9L)
  mycheck(ctrl, ctrl$extra.args$resolution^2)
  ctrl = makeTuneMultiCritControlGrid(resolution = 3, budget = 10L)
  expect_error(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl),
  ".* does not fit to the size of the grid .*")

  # nsga2
  ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
  mycheck(ctrl, ctrl$extra.args$popsize * (ctrl$extra.args$generations + 1))
  expect_error(makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 2L,
    budget = 8L),
  ".* contradicts the product of .*")
  expect_error(makeTuneMultiCritControlNSGA2(generations = 4L, budget = 12L),
    ".* contradicts the product of .*")
  ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, budget = 12L)
  expect_equal(ctrl$extra.args$generations, 2L)
  mycheck(ctrl, 12L)
})

test_that("plotTuneMultiCritResult works with pretty.names", {
  requirePackagesOrSkip("emoa", default.method = "load")
  lrn = makeLearner("classif.rpart")
  ps = makeParamSet(
    makeDiscreteParam("minsplit", values = c(5, 10))
  )
  ctrl.grid = makeTuneMultiCritControlGrid()
  opt.multi.crit = tuneParamsMultiCrit(lrn, multiclass.task, hout,
    list(mmce, acc), par.set = ps, control = ctrl.grid)
  expect_silent(plotTuneMultiCritResult(opt.multi.crit))
  expect_silent(plotTuneMultiCritResult(opt.multi.crit, pretty.names = FALSE))
})

test_that("tuneParamsMultiCrit with resample.fun", {
  requirePackagesOrSkip("emoa", default.method = "load")
  lrn = makeLearner("classif.rpart")
  rdesc = makeResampleDesc("Holdout")
  ps = makeParamSet(
    makeIntegerParam("minsplit", lower = 1, upper = 50)
  )

  # random search
  ctrl = makeTuneMultiCritControlRandom(maxit = 2)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl, resample.fun = constant05Resample)
  expect_true(all(getOptPathY(res$opt.path) == 0.5))

  # grid search
  ctrl = makeTuneMultiCritControlGrid(resolution = 2L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl, resample.fun = constant05Resample)
  expect_true(all(getOptPathY(res$opt.path) == 0.5))

  # nsga2
  ctrl = makeTuneMultiCritControlNSGA2(popsize = 4L, generations = 1L)
  res = tuneParamsMultiCrit(lrn, binaryclass.task, rdesc, par.set = ps,
    measures = list(tpr, fpr), control = ctrl, resample.fun = constant05Resample)
  expect_true(all(getOptPathY(res$opt.path) == 0.5))

  # MBO
  ctrl = makeTuneMultiCritControlMBO(2L, budget = 4L * length(ps$pars) + 1L,
    learner = "regr.lm")
  # suppressed warnings: "generateDesign could only produce 50 points instead of
  # 1000!"
  res = suppressWarnings(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc,
    par.set = ps, measures = list(tpr, fpr), control = ctrl,
    resample.fun = constant05Resample))
  expect_true(all(getOptPathY(res$opt.path) == 0.5))
})

test_that("check n.objectives for MBO multi crit", {
  requirePackagesOrSkip("emoa", default.method = "load")

  lrn = makeLearner("classif.rpart")
  rdesc = makeResampleDesc("Holdout")
  ps = makeParamSet(
    makeIntegerParam("minsplit", lower = 1, upper = 50)
  )

  expect_error(makeTuneMultiCritControlMBO(1L),
    ".* >= 2")
  expect_error(makeTuneMultiCritControlMBO(1.5),
    ".* Must be of type 'single integerish value', not 'double'.")
  ctrl = makeTuneMultiCritControlMBO(2L)

  expect_error(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc,
    measures = list(mmce),
    par.set = ps, control = ctrl),
  ".* Must have length >= 2, but has length 1.")
  expect_error(tuneParamsMultiCrit(lrn, binaryclass.task, rdesc,
    measures = list(mmce, tpr, fpr),
    par.set = ps, control = ctrl),
  ".* Must have length 2, but has length 3.")
})