File: Filter.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (1106 lines) | stat: -rw-r--r-- 39,227 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
.FilterRegister = new.env() # nolint

#' Create a feature filter.
#'
#' Creates and registers custom feature filters. Implemented filters
#' can be listed with [listFilterMethods]. Additional
#' documentation for the `fun` parameter specific to each filter can
#' be found in the description.
#'
#' @param name (`character(1)`)\cr
#'  Identifier for the filter.
#' @param desc (`character(1)`)\cr
#'  Short description of the filter.
#' @param pkg (`character(1)`)\cr
#'  Source package where the filter is implemented.
#' @param supported.tasks ([character])\cr
#'  Task types supported.
#' @param supported.features ([character])\cr
#'  Feature types supported.
#' @param fun (`function(task, nselect, ...`)\cr
#'  Function which takes a task and returns a named numeric vector of scores,
#'  one score for each feature of `task`.
#'  Higher scores mean higher importance of the feature.
#'  At least `nselect` features must be calculated, the remaining may be
#'  set to `NA` or omitted, and thus will not be selected.
#'  the original order will be restored if necessary.
#' @return Object of class \dQuote{Filter}.
#' @export
#' @family filter
makeFilter = function(name, desc, pkg, supported.tasks, supported.features, fun) {

  assertString(name)
  assertString(desc)
  assertCharacter(pkg, any.missing = FALSE)
  assertCharacter(supported.tasks, any.missing = FALSE)
  assertCharacter(supported.features, any.missing = FALSE)
  assertFunction(fun, c("task", "nselect"))
  obj = makeS3Obj("Filter",
    name = name,
    desc = desc,
    pkg = pkg,
    supported.tasks = supported.tasks,
    supported.features = supported.features,
    fun = fun
  )
  .FilterRegister[[name]] = obj
  obj
}

#' List filter methods.
#'
#' Returns a subset-able dataframe with filter information.
#'
#' @param desc (`logical(1)`)\cr
#'  Provide more detailed information about filters.
#'  Default is `TRUE`.
#' @param tasks (`logical(1)`)\cr
#'  Provide information on supported tasks.
#'  Default is `FALSE`.
#' @param features (`logical(1)`)\cr
#'  Provide information on supported features.
#'  Default is `FALSE`.
#' @param include.deprecated (`logical(1)`)\cr
#'  Should deprecated filter methods be included in the list.
#'  Default is `FALSE`.
#' @return ([data.frame]).
#' @export
#' @family filter
listFilterMethods = function(desc = TRUE, tasks = FALSE, features = FALSE, include.deprecated = FALSE) {

  tag2df = function(tags, prefix = "") {
    unique.tags = sort(unique(unlist(tags)))
    res = asMatrixRows(lapply(tags, "%in%", x = unique.tags))
    colnames(res) = stri_paste(prefix, unique.tags)
    rownames(res) = NULL
    as.data.frame(res)
  }
  assertFlag(desc)
  assertFlag(tasks)
  assertFlag(features)

  filters = as.list(.FilterRegister)
  df = data.frame(
    id = names(filters),
    package = vcapply(extractSubList(filters, "pkg"), collapse)
  )

  description = extractSubList(filters, "desc")

  if (desc) {
    df$desc = description
  }
  if (tasks) {
    df = cbind(df, tag2df(extractSubList(filters, "supported.tasks"), prefix = "task."))
  }
  if (features) {
    df = cbind(df, tag2df(extractSubList(filters, "supported.features"), prefix = "feature."))
  }
  deprecated = stri_endswith(description, fixed = "(DEPRECATED)")
  if (include.deprecated) {
    df$deprecated = deprecated
  } else {
    df = df[!deprecated, ]
  }
  res = setRowNames(sortByCol(df, "id"), NULL)
  addClasses(res, "FilterMethodsList")
}

#' @export
print.FilterMethodsList = function(x, len = 40, ...) {
  if (!is.null(x$desc)) {
    x$desc = clipString(x$desc, len = len)
  }
  NextMethod()
}

#' @export
print.Filter = function(x, ...) {
  catf("Filter: '%s'", x$name)
  if (!isScalarNA(x$pkg)) {
    catf("Packages: '%s'", collapse(cleanupPackageNames(x$pkg)))
  }
  catf("Supported tasks: %s", collapse(x$supported.tasks))
  catf("Supported features: %s", collapse(x$supported.features))
}

#' Minimum redundancy, maximum relevance filter \dQuote{mrmr} computes the
#' mutual information between the target and each individual feature minus the
#' average mutual information of previously selected features and this feature
#' using the \pkg{mRMRe} package.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

# mrmr ----------------

makeFilter(
  name = "mrmr",
  desc = "Minimum redundancy, maximum relevance filter",
  pkg = "mRMRe",
  supported.tasks = c("regr", "surv"),
  supported.features = c("numerics", "ordered"),
  fun = function(task, nselect, ...) {

    if (inherits(task, "SurvTask")) {
      data = getTaskData(task, target.extra = TRUE, recode.target = "surv")
      data = cbind(..surv = data$target, data$data)
      target.ind = 1L
    } else {
      data = getTaskData(task)
      target.ind = match(getTaskTargetNames(task), colnames(data))
    }

    # some required conversions
    ind = which(vlapply(data, is.integer))
    data[ind] = lapply(data[ind], as.double)
    data = mRMRe::mRMR.data(data = data)

    threads.before = mRMRe::get.thread.count()
    on.exit(mRMRe::set.thread.count(threads.before))
    mRMRe::set.thread.count(1L)
    res = mRMRe::mRMR.classic(data = data, target_indices = target.ind, feature_count = nselect, ...)
    scores = as.numeric(mRMRe::scores(res)[[1L]])
    setNames(scores, res@feature_names[as.integer(mRMRe::solutions(res)[[1L]])])
  }
)

# carscore ----------------

#' Filter \dQuote{carscore} determines the \dQuote{Correlation-Adjusted (marginal) coRelation
#' scores} (short CAR scores). The CAR scores for a set of features are defined as the
#' correlations between the target and the decorrelated features.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "carscore",
  desc = "CAR scores",
  pkg = "care",
  supported.tasks = "regr",
  supported.features = "numerics",
  fun = function(task, nselect, ...) {
    data = getTaskData(task, target.extra = TRUE)
    y = care::carscore(Xtrain = data$data, Ytrain = data$target, verbose = FALSE, ...)^2
    setNames(as.double(y), names(y))
  }
)

# party_cforest.importance ----------------

#' Permutation importance of random forests fitted in package \pkg{party}.
#' The implementation follows the principle of mean decrese in accuracy used
#' by the \pkg{randomForest} package (see description of \dQuote{randomForest_importance})
#' filter.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "party_cforest.importance",
  desc = "Permutation importance of random forest fitted in package 'party'",
  pkg = "party",
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, mtry = 5L, ...) {

    args = list(...)
    # we need to set mtry, which is 5 by default in cforest, to p if p < mtry
    # otherwise we get a warning
    p = getTaskNFeats(task)
    if (p < mtry) {
      args$mtry = p
    }
    cforest.args = as.list(base::args(party::cforest))
    cforest.args = args[names(args) %in% names(cforest.args)]
    control.args = as.list(base::args(party::cforest_control))
    control.args = args[names(args) %in% names(control.args)]
    varimp.args = as.list(base::args(party::varimp))
    varimp.args = args[names(args) %in% names(varimp.args)]
    ctrl = do.call(party::cforest_unbiased, control.args)
    fit = do.call(party::cforest, c(list(formula = getTaskFormula(task), data = getTaskData(task), controls = ctrl),
      cforest.args))
    im = do.call(party::varimp, c(list(obj = fit), varimp.args))
    im
  }
)

cforest.importance = makeFilter(
  name = "party_cforest.importance",
  desc = "Permutation importance of random forest fitted in package 'party'",
  pkg = "party",
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, mtry = 5L, ...) {

    args = list(...)
    # we need to set mtry, which is 5 by default in cforest, to p if p < mtry
    # otherwise we get a warning
    p = getTaskNFeats(task)
    if (p < mtry) {
      args$mtry = p
    }
    cforest.args = as.list(base::args(party::cforest))
    cforest.args = args[names(args) %in% names(cforest.args)]
    control.args = as.list(base::args(party::cforest_control))
    control.args = args[names(args) %in% names(control.args)]
    varimp.args = as.list(base::args(party::varimp))
    varimp.args = args[names(args) %in% names(varimp.args)]
    ctrl = do.call(party::cforest_unbiased, control.args)
    fit = do.call(party::cforest, c(list(formula = getTaskFormula(task), data = getTaskData(task), controls = ctrl),
      cforest.args))
    im = do.call(party::varimp, c(list(obj = fit), varimp.args))
    im
  }
)

.FilterRegister[["cforest.importance"]] = cforest.importance
.FilterRegister[["cforest.importance"]]$desc = "(DEPRECATED)"
.FilterRegister[["cforest.importance"]]$fun = function(...) {
  .Deprecated(old = "Filter 'cforest.importance'", new = "Filter 'party_cforest.importance' (package party)")
  .FilterRegister[["party_cforest.importance"]]$fun(...)
}

# randomForest_importance ----------------

#' Filter \dQuote{randomForest_importance} makes use of the [randomForest::importance]
#' from package \pkg{randomForest}. The importance measure to use is selected via
#' the `method` parameter:
#' \describe{
#'   \item{oob.accuracy}{Permutation of Out of Bag (OOB) data.}
#'   \item{node.impurity}{Total decrease in node impurity.}
#' }
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "randomForest_importance",
  desc = "Importance based on OOB-accuracy or node inpurity of random forest fitted in package 'randomForest'.",
  pkg = "randomForest",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, method = "oob.accuracy", ...) {
    assertChoice(method, choices = c("oob.accuracy", "node.impurity"))
    type = if (method == "oob.accuracy") 1L else 2L
    # no need to set importance = TRUE for node impurity (type = 2)
    rf = randomForest::randomForest(getTaskFormula(task), data = getTaskData(task),
      keep.forest = FALSE, importance = (type != 2L))
    im = randomForest::importance(rf, type = type, ...)
    setNames(im, rownames(im))
  }
)

randomForest.importance = makeFilter( # nolint
  name = "randomForest_importance",
  desc = "Importance based on OOB-accuracy or node inpurity of random forest fitted in package 'randomForest'.",
  pkg = "randomForest",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, method = "oob.accuracy", ...) {
    assertChoice(method, choices = c("oob.accuracy", "node.impurity"))
    type = if (method == "oob.accuracy") 1L else 2L
    # no need to set importance = TRUE for node impurity (type = 2)
    rf = randomForest::randomForest(getTaskFormula(task), data = getTaskData(task),
      keep.forest = FALSE, importance = (type != 2L))
    im = randomForest::importance(rf, type = type, ...)
    setNames(im, rownames(im))
  }
)

.FilterRegister[["randomForest.importance"]] = randomForest.importance
.FilterRegister[["randomForest.importance"]]$desc = "(DEPRECATED)"
.FilterRegister[["randomForest.importance"]]$fun = function(...) {
  .Deprecated(old = "Filter 'randomForest.importance'", new = "Filter 'randomForest_importance' (package randomForest)")
  .FilterRegister[["randomForest_importance"]]$fun(...)
}

# linear.correlation ----------------

#' The absolute Pearson correlation between each feature and the target is used as an indicator of feature importance.
#' Missing values are not taken into consideration in a pairwise fashion (see \dQuote{pairwise.complete.obs} in [cor]).
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "linear.correlation",
  desc = "Pearson correlation between feature and target",
  pkg = character(0L),
  supported.tasks = "regr",
  supported.features = "numerics",
  fun = function(task, nselect, ...) {
    data = getTaskData(task, target.extra = TRUE)
    abs(cor(as.matrix(data$data), data$target, use = "pairwise.complete.obs", method = "pearson")[, 1L])
  }
)

# rank.correlation ----------------

#' The absolute Pearson correlation between each feature and the target is used as an indicator of feature importance.
#' Missing values are not taken into consideration in a pairwise fashion (see \dQuote{pairwise.complete.obs} in [cor]).
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "rank.correlation",
  desc = "Spearman's correlation between feature and target",
  pkg = character(0L),
  supported.tasks = "regr",
  supported.features = "numerics",
  fun = function(task, nselect, ...) {
    data = getTaskData(task, target.extra = TRUE)
    abs(cor(as.matrix(data$data), data$target, use = "pairwise.complete.obs", method = "spearman")[, 1L])
  }
)

# FSelector_information.gain ----------------

#' Filter \dQuote{information.gain} uses the entropy-based information gain
#' between each feature and target individually as an importance measure.
#'
#' @rdname makeFilter
#' @name makeFilter
makeFilter(
  name = "FSelector_information.gain",
  desc = "Entropy-based information gain between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::information.gain(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

information.gain = makeFilter(
  name = "FSelector_information.gain",
  desc = "Entropy-based information gain between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::information.gain(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["information.gain"]] = information.gain
.FilterRegister[["information.gain"]]$desc = "(DEPRECATED)"
.FilterRegister[["information.gain"]]$fun = function(...) {
  .Deprecated(old = "Filter 'information.gain'", new = "Filter 'FSelector_information.gain' (package FSelector)")
  .FilterRegister[["FSelector_information.gain"]]$fun(...)
}


# FSelector_gain.ratio ----------------

#' Filter \dQuote{gain.ratio} uses the entropy-based information gain ratio
#' between each feature and target individually as an importance measure.
#'
#' @rdname makeFilter
#' @name makeFilter
makeFilter(
  name = "FSelector_gain.ratio",
  desc = "Entropy-based gain ratio between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::gain.ratio(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

gain.ratio = makeFilter(
  name = "FSelector_gain.ratio",
  desc = "Entropy-based gain ratio between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::gain.ratio(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["gain.ratio"]] = gain.ratio
.FilterRegister[["gain.ratio"]]$desc = "(DEPRECATED)"
.FilterRegister[["gain.ratio"]]$fun = function(...) {
  .Deprecated(old = "Filter 'gain.ratio'", new = "Filter 'FSelector_gain.ratio' (package FSelector)")
  .FilterRegister[["FSelector_gain.ratio"]]$fun(...)
}

# FSelector_symmetrical.uncertainty ----------------

#' Filter \dQuote{symmetrical.uncertainty} uses the entropy-based symmetrical uncertainty
#' between each feature and target individually as an importance measure.
#'
#' @rdname makeFilter
#' @name makeFilter
makeFilter(
  name = "FSelector_symmetrical.uncertainty",
  desc = "Entropy-based symmetrical uncertainty between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::symmetrical.uncertainty(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

symmetrical.uncertainty = makeFilter(
  name = "FSelector_symmetrical.uncertainty",
  desc = "Entropy-based symmetrical uncertainty between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::symmetrical.uncertainty(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["symmetrical.uncertainty"]] = symmetrical.uncertainty
.FilterRegister[["symmetrical.uncertainty"]]$desc = "(DEPRECATED)"
.FilterRegister[["symmetrical.uncertainty"]]$fun = function(...) {
  .Deprecated(old = "Filter 'symmetrical.uncertainty'", new = "Filter 'FSelector_symmetrical.uncertainty' (package FSelector)")
  .FilterRegister[["FSelector_symmetrical.uncertainty"]]$fun(...)
}

# FSelector_chi.squared ----------------

#' The chi-square test is a statistical test of independence to determine whether
#' two variables are independent. Filter \dQuote{chi.squared} applies this
#' test in the following way. For each feature the chi-square test statistic is
#' computed checking if there is a dependency between the feature and the target
#' variable. Low values of the test statistic indicate a poor relationship. High
#' values, i.e., high dependency identifies a feature as more important.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "FSelector_chi.squared",
  desc = "Chi-squared statistic of independence between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::chi.squared(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

chi.squared = makeFilter(
  name = "FSelector_chi.squared",
  desc = "Chi-squared statistic of independence between feature and target",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::chi.squared(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["chi.squared"]] = chi.squared
.FilterRegister[["chi.squared"]]$desc = "(DEPRECATED)"
.FilterRegister[["chi.squared"]]$fun = function(...) {
  .Deprecated(old = "Filter 'chi.squared'", new = "Filter 'FSelector_chi.squared' (package FSelector)")
  .FilterRegister[["FSelector_chi.squared"]]$fun(...)
}

# FSelector_relief ----------------

#' Filter \dQuote{relief} is based on the feature selection algorithm \dQuote{ReliefF}
#' by Kononenko et al., which is a generalization of the orignal \dQuote{Relief}
#' algorithm originally proposed by Kira and Rendell. Feature weights are initialized
#' with zeros. Then for each instance `sample.size` instances are sampled,
#' `neighbours.count` nearest-hit and nearest-miss neighbours are computed
#' and the weight vector for each feature is updated based on these values.
#'
#' @references
#' Kira, Kenji and Rendell, Larry (1992). The Feature Selection Problem: Traditional
#' Methods and a New Algorithm. AAAI-92 Proceedings.
#'
#' Kononenko, Igor et al. Overcoming the myopia of inductive learning algorithms
#' with RELIEFF (1997), Applied Intelligence, 7(1), p39-55.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "FSelector_relief",
  desc = "RELIEF algorithm",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::relief(getTaskFormula(task), data = getTaskData(task), ...)
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

relief = makeFilter(
  name = "FSelector_relief",
  desc = "RELIEF algorithm",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::relief(getTaskFormula(task), data = getTaskData(task), ...)
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["relief"]] = relief
.FilterRegister[["relief"]]$desc = "(DEPRECATED)"
.FilterRegister[["relief"]]$fun = function(...) {
  .Deprecated(old = "Filter 'relief'", new = "Filter 'FSelector_relief' (package FSelector)")
  .FilterRegister[["FSelector_relief"]]$fun(...)
}

# FSelector_oneR ----------------

#' Filter \dQuote{oneR} makes use of a simple \dQuote{One-Rule} (OneR) learner to
#' determine feature importance. For this purpose the OneR learner generates one
#' simple association rule for each feature in the data individually and computes
#' the total error. The lower the error value the more important the correspoding
#' feature.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "FSelector_oneR",
  desc = "oneR association rule",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::oneR(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

oneR = makeFilter( # nolint
  name = "FSelector_oneR",
  desc = "oneR association rule",
  pkg = "FSelector",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    y = FSelector::oneR(getTaskFormula(task), data = getTaskData(task))
    setNames(y[["attr_importance"]], getTaskFeatureNames(task))
  }
)

.FilterRegister[["oneR"]] = oneR
.FilterRegister[["oneR"]]$desc = "(DEPRECATED)"
.FilterRegister[["oneR"]]$fun = function(...) {
  .Deprecated(old = "Filter 'oneR'", new = "Filter 'FSelector_oneR' (package FSelector)")
  .FilterRegister[["FSelector_oneR"]]$fun(...)
}

# univariate ----------------

#' The \dQuote{univariate.model.score} feature filter resamples an \pkg{mlr}
#' learner specified via `perf.learner` for each feature individually
#' with randomForest from package \pkg{rpart} being the default learner.
#' Further parameter are the resamling strategey `perf.resampling` and
#' the performance measure `perf.measure`.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

univariate = makeFilter(
  name = "univariate.model.score",
  desc = "Resamples an mlr learner for each input feature individually. The resampling performance is used as filter score, with rpart as default learner.",
  pkg = character(0L),
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, perf.learner = NULL, perf.measure = NULL, perf.resampling = NULL, ...) {

    typ = getTaskType(task)
    if (is.null(perf.learner)) {
      if (typ == "classif") {
        perf.learner = "classif.rpart"
      } else if (typ == "regr") {
        perf.learner = "regr.rpart"
      } else if (typ == "surv") {
        perf.learner = "surv.rpart"
      }
    }
    if (is.null(perf.measure)) {
      perf.measure = getDefaultMeasure(task)
    }
    perf.learner = checkLearner(perf.learner)
    perf.measure = checkMeasures(perf.measure, perf.learner)
    if (length(perf.measure) != 1L) {
      stop("Exactly one measure must be provided")
    }
    if (is.null(perf.resampling)) {
      perf.resampling = makeResampleDesc("Subsample", iters = 1L, split = 0.67)
    }
    if (getTaskType(task) != perf.learner$type) {
      stopf("Expected task of type '%s', not '%s'", getTaskType(task), perf.learner$type)
    }

    fns = getTaskFeatureNames(task)
    res = double(length(fns))
    for (i in seq_along(fns)) {
      subtask = subsetTask(task, features = fns[i])
      res[i] = resample(learner = perf.learner, task = subtask, resampling = perf.resampling, measures = perf.measure, keep.pred = FALSE, show.info = FALSE)$aggr
    }
    if (perf.measure[[1L]]$minimize) {
      res = -1.0 * res
    }
    setNames(res, fns)
  }
)
.FilterRegister[["univariate"]] = univariate
.FilterRegister[["univariate"]]$desc = "(DEPRECATED)"
.FilterRegister[["univariate"]]$fun = function(...) {
  .Deprecated(old = "Filter 'univariate'", new = "Filter 'univariate.model.score'")
  .FilterRegister[["univariate.model.score"]]$fun(...)
}

# anova.test ----------------

#' Filter \dQuote{anova.test} is based on the Analysis of Variance (ANOVA) between
#' feature and class. The value of the F-statistic is used as a measure of feature
#' importance.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "anova.test",
  desc = "ANOVA Test for binary and multiclass classification tasks",
  pkg = character(0L),
  supported.tasks = "classif",
  supported.features = "numerics",
  fun = function(task, nselect, ...) {
    data = getTaskData(task)
    vnapply(getTaskFeatureNames(task), function(feat.name) {
      f = as.formula(stri_paste(feat.name, "~", getTaskTargetNames(task)))
      aov.t = aov(f, data = data)
      summary(aov.t)[[1L]][1L, "F value"]
    })
  }
)

# kruskal.test ----------------

#' Filter \dQuote{kruskal.test} applies a Kruskal-Wallis rank sum test of the
#' null hypothesis that the location parameters of the distribution of a feature
#' are the same in each class and considers the test statistic as an variable
#' importance measure: if the location parameters do not differ in at least one
#' case, i.e., the null hypothesis cannot be rejected, there is little evidence
#' that the corresponding feature is suitable for classification.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "kruskal.test",
  desc = "Kruskal Test for binary and multiclass classification tasks",
  pkg = character(0L),
  supported.tasks = "classif",
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    data = getTaskData(task)
    sapply(getTaskFeatureNames(task), function(feat.name) {
      f = as.formula(stri_paste(feat.name, "~", getTaskTargetNames(task)))
      t = kruskal.test(f, data = data)
      unname(t$statistic)
    })
  }
)

# variance ----------------

#' Simple filter based on the variance of the features indepentent of each other.
#' Features with higher variance are considered more important than features with
#' low importance.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "variance",
  desc = "A simple variance filter",
  pkg = character(0L),
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = "numerics",
  fun = function(task, nselect, na.rm = TRUE, ...) {
    data = getTaskData(task)
    sapply(getTaskFeatureNames(task), function(feat.name) {
      var(data[[feat.name]], na.rm = na.rm)
    })
  }
)

# permutation.importance ----------------

#' Filter \dQuote{permutation.importance} computes a loss function between predictions made by a
#' learner before and after a feature is permuted. Special arguments to the filter function are
#' `imp.learner`, a ([Learner] or `character(1)]) which specifies the learner
#' to use when computing the permutation importance, `contrast`, a `function` which takes two
#' numeric vectors and returns one (default is the difference), `aggregation`, a `function` which
#' takes a `numeric` and returns a `numeric(1)` (default is the mean), `nmc`,
#' an `integer(1)`, and `replace`, a `logical(1)` which determines whether the feature being
#' permuted is sampled with or without replacement.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "permutation.importance",
  desc = "Aggregated difference between feature permuted and unpermuted predictions",
  pkg = character(0L),
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, imp.learner, measure, contrast = function(x, y) x - y,
    aggregation = mean, nmc = 50L, replace = FALSE, nselect) {
    imp = generateFeatureImportanceData(task, "permutation.importance",
      imp.learner, interaction = FALSE, measure = measure,
      contrast = contrast, aggregation = aggregation,
      nmc = nmc, replace = replace, local = FALSE)
    imp = as.numeric(imp$res)
    names(imp) = getTaskFeatureNames(task)
    return(imp)
  }
)

# auc ----------------

#' Filter \dQuote{auc} determines for each feature, how well the target
#' variable can be predicted only based on this feature. More precisely, the
#' prediction rule is: class 1 if the feature exceeds a threshold and class 0
#' otherwise. The performance of this classification rule is measured by the
#' AUC and the resulting filter score is |0.5 - AUC|.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "auc",
  desc = "AUC filter for binary classification tasks",
  pkg = character(0L),
  supported.tasks = "classif",
  supported.features = "numerics",
  fun = function(task, nselect, ...) {
    data = getTaskData(task, target.extra = TRUE)
    score = vnapply(data$data, function(x, y) {
      measureAUC(x, y, task$task.desc$negative, task$task.desc$positive)
    }, y = data$target)
    abs(0.5 - score)
  }
)

#' Filters from the package \pkg{praznik} use the mutual information criteria in a greedy forward fashion:
#' \dQuote{praznik_CMIM}, \dQuote{praznik_DISR}, \dQuote{praznik_JMIM}, \dQuote{praznik_JMI},
#' \dQuote{praznik_MIM}, \dQuote{praznik_MRMR}, \dQuote{praznik_NJMIM}.
#' As the calculated feature scores are not guaranteed to be monotone, the scores returned by \pkg{mlr} reflect the
#' selection order instead. The selected features get scores \code{1}, \code{(n-1)/n}, ..., \code{1/n} where \code{n}
#' is the total number of features.
#' @rdname makeFilter
#' @name makeFilter
NULL

praznik_filter = function(fun) {
  # nolint
  force(fun)

  function(task, nselect, ...) {

    fun = getFromNamespace(fun, ns = "praznik")

    data = getTaskData(task)
    X = data[getTaskFeatureNames(task)]
    Y = data[[getTaskTargetNames(task)]]
    k = max(min(nselect, ncol(X)), 1L)
    selected = names(fun(X, Y, k = k)$selection)
    score = setNames(rev(seq_along(selected)) / length(selected), selected)


    if (length(score) < ncol(X)) {
      unscored = sample(setdiff(names(X), names(score)))
      score = c(score, setNames(rep.int(NA_real_, length(unscored)), unscored))
    }

    score
  }
}

# praznik_JMI ----------------

makeFilter(
  name = "praznik_JMI",
  desc = "Joint mutual information filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("JMI")
)

# praznik_DISR ----------------

makeFilter(
  name = "praznik_DISR",
  desc = "Double input symmetrical relevance filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("DISR")
)

# praznik_JMIM ----------------

makeFilter(
  name = "praznik_JMIM",
  desc = "Minimal joint mutual information maximisation filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("JMIM")
)

# praznik_MIM ----------------

makeFilter(
  name = "praznik_MIM",
  desc = "conditional mutual information based feature selection filters",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("MIM")
)

# praznik_NJMIM ----------------

makeFilter(
  name = "praznik_NJMIM",
  desc = "Minimal normalised joint mutual information maximisation filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("NJMIM")
)

# praznik_MRMR ----------------

makeFilter(
  name = "praznik_MRMR",
  desc = "Minimum redundancy maximal relevancy filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("MRMR")
)

# praznik_CMIM ----------------

makeFilter(
  name = "praznik_CMIM",
  desc = "Minimal conditional mutual information maximisation filter",
  pkg = "praznik",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "character", "logical"),
  fun = praznik_filter("CMIM")
)

#' Entropy based filters from the package \pkg{FSelectorRcpp}:
#' \dQuote{FSelectorRcpp_gain.ratio}, dQuote{FSelectorRcpp_information.gain}, \dQuote{FSelectorRcpp_symmetrical.uncertainty}.
#' @rdname makeFilter
#' @name makeFilter
NULL

FSelectorRcpp.filter = function(type) {
  # nolint
  force(type)

  function(task, nselect, ...) {
    data = getTaskData(task)
    X = data[getTaskFeatureNames(task)]
    y = data[[getTaskTargetNames(task)]]
    res = FSelectorRcpp::information_gain(x = X, y = y, type = type, ...)
    res = setNames(res$importance, res$attributes)
    replace(res, is.nan(res), 0) # FIXME: this is a technical fix, need to report upstream
  }
}

# FSelectorRcpp_relief ----------------

#' Filter \dQuote{relief} is based on the feature selection algorithm \dQuote{ReliefF}
#' by Kononenko et al., which is a generalization of the orignal \dQuote{Relief}
#' algorithm originally proposed by Kira and Rendell. Feature weights are initialized
#' with zeros. Then for each instance `sample.size` instances are sampled,
#' `neighbours.count` nearest-hit and nearest-miss neighbours are computed
#' and the weight vector for each feature is updated based on these values.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

# FSelectorRcpp_relief ----------------

makeFilter(
  name = "FSelectorRcpp_relief",
  desc = "RELIEF algorithm",
  pkg = "FSelectorRcpp",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors"),
  fun = function(task, nselect, ...) {
    data = getTaskData(task)
    X = data[getTaskFeatureNames(task)]
    Y = data[[getTaskTargetNames(task)]]
    res = FSelectorRcpp::relief(x = X, y = Y, ...)
    res = setNames(res$importance, res$attributes)
    replace(res, is.nan(res), 0) # FIXME: this is a technical fix, need to report upstream
  }
)

# FSelectorRcpp_info.gain ----------------

makeFilter(
  name = "FSelectorRcpp_information.gain",
  desc = "Entropy-based Filters: Algorithms that find ranks of importance of discrete attributes, basing on their entropy with a continous class attribute",
  pkg = "FSelectorRcpp",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "logical", "character"),
  fun = FSelectorRcpp.filter("infogain")
)

# FSelectorRcpp_gain.ratio ----------------

makeFilter(
  name = "FSelectorRcpp_gain.ratio",
  desc = "Entropy-based Filters: Algorithms that find ranks of importance of discrete attributes, basing on their entropy with a continous class attribute",
  pkg = "FSelectorRcpp",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "logical", "character"),
  fun = FSelectorRcpp.filter("gainratio")
)

# FSelectorRcpp_symuncert ----------------

makeFilter(
  name = "FSelectorRcpp_symmetrical.uncertainty",
  desc = "Entropy-based Filters: Algorithms that find ranks of importance of discrete attributes, basing on their entropy with a continous class attribute",
  pkg = "FSelectorRcpp",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "integer", "logical", "character"),
  fun = FSelectorRcpp.filter("symuncert")
)

# ranger_permutation ----------------

#' Filter \dQuote{ranger.permutation} trains a \pkg{ranger} learner with
#' \dQuote{importance = "permutation"} and assesses the variable
#' importance for each feature.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "ranger_permutation",
  desc = "Variable importance based on ranger permutation importance",
  pkg = "ranger",
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, ...) {
    lrn.type = paste0(getTaskType(task), ".ranger")
    lrn = makeLearner(lrn.type, importance = "permutation", ...)
    mod = train(lrn, task)
    ranger::importance(mod$learner.model)
  }
)

ranger.permutation = makeFilter(
  name = "ranger_permutation",
  desc = "Variable importance based on ranger permutation importance",
  pkg = "ranger",
  supported.tasks = c("classif", "regr", "surv"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, ...) {
    lrn.type = paste0(getTaskType(task), ".ranger")
    lrn = makeLearner(lrn.type, importance = "permutation", ...)
    mod = train(lrn, task)
    ranger::importance(mod$learner.model)
  }
)

.FilterRegister[["ranger.permutation"]] = ranger.permutation
.FilterRegister[["ranger.permutation"]]$desc = "(DEPRECATED)"
.FilterRegister[["ranger.permutation"]]$fun = function(...) {
  .Deprecated(old = "Filter 'ranger.permutation'", new = "Filter 'ranger_permutation' (package ranger)")
  .FilterRegister[["ranger_permutation"]]$fun(...)
}

# ranger_impurity ----------------

#' Filter \dQuote{ranger.impurity} trains a \pkg{ranger} learner with
#' \dQuote{importance = "impurity"} and assesses the variable
#' importance for each feature.
#'
#' @rdname makeFilter
#' @name makeFilter
NULL

makeFilter(
  name = "ranger_impurity",
  desc = "Variable importance based on ranger impurity importance",
  pkg = "ranger",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, ...) {
    lrn.type = paste0(getTaskType(task), ".ranger")
    lrn = makeLearner(lrn.type, importance = "impurity", ...)
    mod = train(lrn, task)
    ranger::importance(mod$learner.model)
  }
)

ranger.impurity = makeFilter(
  name = "ranger_impurity",
  desc = "Variable importance based on ranger impurity importance",
  pkg = "ranger",
  supported.tasks = c("classif", "regr"),
  supported.features = c("numerics", "factors", "ordered"),
  fun = function(task, nselect, ...) {
    lrn.type = paste0(getTaskType(task), ".ranger")
    lrn = makeLearner(lrn.type, importance = "impurity", ...)
    mod = train(lrn, task)
    ranger::importance(mod$learner.model)
  }
)


.FilterRegister[["ranger.impurity"]] = ranger.impurity
.FilterRegister[["ranger.impurity"]]$desc = "(DEPRECATED)"
.FilterRegister[["ranger.impurity"]]$fun = function(...) {
  .Deprecated(old = "Filter 'ranger.impurity'", new = "Filter 'ranger_impurity' (package ranger)")
  .FilterRegister[["ranger_impurity"]]$fun(...)
}