File: ImputeMethods.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (335 lines) | stat: -rw-r--r-- 11,439 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# FIXME: From a design point of view, using the task here as input argument
# might be more extensible for us later and
# convenient for the user.
# For us, we can use polymorphism, and for the user
# the task contains a lot of helpful info.
# But I do not want to revamp the structure now

#' Create a custom imputation method.
#'
#' This is a constructor to create your own imputation methods.
#' @param learn (`function(data, target, col, ...)`)\cr
#'   Function to learn and extract information on column `col`
#'   out of data frame `data`. Argument `target` specifies
#'   the target column of the learning task.
#'   The function has to return a named list of values.
#' @param impute (`function(data, target, col, ...)`)\cr
#'   Function to impute missing values in `col` using information
#'   returned by `learn` on the same column.
#'   All list elements of the return values o `learn`
#'   are passed to this function into `...`.
#' @param args ([list])\cr
#'   Named list of arguments to pass to `learn` via `...`.
#' @family impute
#' @export
makeImputeMethod = function(learn, impute, args = list()) {
  assertFunction(learn, args = c("data", "target", "col"))
  assertFunction(impute, args = c("data", "target", "col"))
  assertList(args, names = "named")
  setClasses(list(learn = learn, impute = impute, args = args), "ImputeMethod")
}

# helper function to impute missings of a col to const val
simpleImpute = function(data, target, col, const) {
  if (is.na(const)) {
    stopf("Error imputing column '%s'. Maybe all input data was missing?", col)
  }
  x = data[[col]]

  # cast logicals to factor if required (#1522)
  if (is.logical(x) && !is.logical(const)) {
    x = as.factor(x)
  }
  if (is.factor(x) && const %nin% levels(x)) {
    levels(x) = c(levels(x), as.character(const))
  }
  replace(x, is.na(x), const)
}


#' Built-in imputation methods.
#'
#' The built-ins are:
#' \itemize{
#'   \item `imputeConstant(const)` for imputation using a constant value,
#'   \item `imputeMedian()` for imputation using the median,
#'   \item `imputeMode()` for imputation using the mode,
#'   \item `imputeMin(multiplier)` for imputing constant values shifted below the minimum
#'     using `min(x) - multiplier * diff(range(x))`,
#'   \item `imputeMax(multiplier)` for imputing constant values shifted above the maximum
#'     using `max(x) + multiplier * diff(range(x))`,
#'   \item `imputeNormal(mean, sd)` for imputation using normally
#'     distributed random values. Mean and standard deviation will be calculated
#'     from the data if not provided.
#'   \item `imputeHist(breaks, use.mids)` for imputation using random values
#'     with probabilities calculated using `table` or `hist`.
#'   \item `imputeLearner(learner, features = NULL)` for imputations using the response
#'     of a classification or regression learner.
#' }
#' @name imputations
#' @rdname imputations
#' @family impute
NULL

#' @export
#' @param const (any)\cr
#'  Constant valued use for imputation.
#' @rdname imputations
imputeConstant = function(const) {
  assertVector(const, len = 1L, any.missing = FALSE)
  makeImputeMethod(
    learn = function(data, target, col, const) const,
    impute = simpleImpute,
    args = list(const = const)
  )
}

#' @export
#' @rdname imputations
imputeMedian = function() {
  makeImputeMethod(
    learn = function(data, target, col) median(data[[col]], na.rm = TRUE),
    impute = simpleImpute
  )
}

#' @export
#' @rdname imputations
imputeMean = function() {
  makeImputeMethod(
    learn = function(data, target, col) mean(data[[col]], na.rm = TRUE),
    impute = simpleImpute
  )
}

#' @export
#' @rdname imputations
imputeMode = function() {
  makeImputeMethod(
    learn = function(data, target, col) computeMode(data[[col]], na.rm = TRUE),
    impute = simpleImpute
  )
}

#' @export
#' @param multiplier (`numeric(1)`)\cr
#'   Value that stored minimum or maximum is multiplied with when imputation is done.
#' @rdname imputations
imputeMin = function(multiplier = 1) {
  assertNumber(multiplier)
  makeImputeMethod(
    learn = function(data, target, col, multiplier) {
      r = range(data[[col]], na.rm = TRUE)
      r[1L] - multiplier * diff(r)
    },
    impute = simpleImpute,
    args = list(multiplier = multiplier)
  )
}

#' @export
#' @rdname imputations
imputeMax = function(multiplier = 1) {
  assertNumber(multiplier)
  makeImputeMethod(
    learn = function(data, target, col, multiplier) {
      r = range(data[[col]], na.rm = TRUE)
      r[2L] + multiplier * diff(r)
    },
    impute = simpleImpute,
    args = list(multiplier = multiplier)
  )
}

#' @export
#' @param min (`numeric(1)`)\cr
#'   Lower bound for uniform distribution.
#'   If NA (default), it will be estimated from the data.
#' @param max (`numeric(1)`)\cr
#'   Upper bound for uniform distribution.
#'   If NA (default), it will be estimated from the data.
#' @rdname imputations
imputeUniform = function(min = NA_real_, max = NA_real_) {
  assertNumber(min, na.ok = TRUE)
  assertNumber(max, na.ok = TRUE)
  makeImputeMethod(
    learn = function(data, target, col, min, max) {
      if (is.na(min)) {
        min = min(data[[col]], na.rm = TRUE)
        if (is.na(min)) {
          stop("All values are missing. Unable to calculate minimum.")
        }
      }
      if (is.na(max)) {
        max = max(data[[col]], na.rm = TRUE)
        if (is.na(max)) {
          stop("All values are missing. Unable to calculate maximum.")
        }
      }
      list(min = min, max = max)
    },
    impute = function(data, target, col, min, max) {
      x = data[[col]]
      ind = is.na(x)
      replace(x, ind, runif(sum(ind), min = min, max = max))
    },
    args = list(min = min, max = max)
  )
}

#' @export
#' @param mu (`numeric(1)`)\cr
#'   Mean of normal distribution. If missing it will be estimated from the data.
#' @param sd (`numeric(1)`)\cr
#'   Standard deviation of normal distribution. If missing it will be estimated from the data.
#' @rdname imputations
imputeNormal = function(mu = NA_real_, sd = NA_real_) {
  assertNumber(mu, na.ok = TRUE)
  assertNumber(sd, na.ok = TRUE)

  makeImputeMethod(
    learn = function(data, target, col, mu, sd) {
      if (is.na(mu)) {
        mu = mean(data[[col]], na.rm = TRUE)
        if (is.na(mu)) {
          stop("All values missing. Unable to calculate mean.")
        }
      }
      if (is.na(sd)) {
        sd = sd(data[[col]], na.rm = TRUE)
        if (is.na(sd)) {
          stop("All values missing. Unable to calculate sd.")
        }
      }
      list(mu = mu, sd = sd)
    },
    impute = function(data, target, col, mu, sd) {
      x = data[[col]]
      ind = is.na(x)
      replace(x, ind, rnorm(sum(ind), mean = mu, sd = sd))
    },
    args = list(mu = mu, sd = sd)
  )
}

#' @export
#' @param breaks (`numeric(1)`)\cr
#'  Number of breaks to use in [graphics::hist]. If missing,
#'  defaults to auto-detection via \dQuote{Sturges}.
#' @param use.mids (`logical(1)`)\cr
#'  If `x` is numeric and a histogram is used, impute with bin mids (default)
#'  or instead draw uniformly distributed samples within bin range.
#' @rdname imputations
imputeHist = function(breaks, use.mids = TRUE) {
  if (missing(breaks)) {
    breaks = "Sturges"
  }
  if (!identical(breaks, "Sturges")) {
    breaks = asCount(breaks)
  }
  assertFlag(use.mids)

  makeImputeMethod(

    learn = function(data, target, col, breaks, use.mids) {
      x = data[[col]]
      if (all(is.na(x))) {
        stop("All values missing. Unable to impute with Hist.")
      }
      if (is.numeric(x)) {
        tmp = hist(x, breaks = breaks, plot = FALSE)
        if (use.mids) {
          return(list(counts = tmp$counts, values = tmp$mids))
        } else {
          return(list(counts = tmp$counts, breaks = tmp$breaks))
        }
      } else { # factor or logical feature
        tmp = table(x, useNA = "no")
        values = names(tmp)
        if (is.logical(x)) {
          values = as.logical(x)
        }
        return(list(counts = as.integer(tmp), values = values))
      }
    },

    impute = function(data, target, col, counts, values, breaks) {
      x = data[[col]]
      ind = which(is.na(x))
      if (missing(values)) {
        w = sample(seq_along(counts), length(ind), replace = TRUE, prob = counts)
        values = runif(length(ind), min = head(breaks, -1L)[w], max = tail(breaks, -1L)[w])
      } else {
        values = sample(values, length(ind), replace = TRUE, prob = counts)
      }
      replace(x, ind, values)
    },
    args = list(breaks = breaks, use.mids = use.mids)
  )
}

#' @param learner ([Learner] | `character(1)`)\cr
#'  Supervised learner. Its predictions will be used for imputations.
#'  If you pass a string the learner will be created via [makeLearner].
#'  Note that the target column is not available for this operation.
#' @param features ([character])\cr
#'  Features to use in `learner` for prediction.
#'  Default is `NULL` which uses all available features except the target column
#'  of the original task.
#' @rdname imputations
#' @export
imputeLearner = function(learner, features = NULL) {
  learner = checkLearner(learner)
  if (!is.null(features)) {
    assertCharacter(features, any.missing = FALSE)
  }

  makeImputeMethod(
    learn = function(data, target, col, learner, features) {

      constructor = getTaskConstructorForLearner(learner)
      if (is.null(features)) {
        features = setdiff(names(data), target)
      } else {
        not.ok = which(features %nin% names(data))
        if (length(not.ok)) {
          stopf("Features for imputation not found in data: '%s'", collapse(features[not.ok]))
        }
        not.ok = which.first(target %in% features)
        if (length(not.ok)) {
          stopf("Target column used as feature for imputation: '%s'", target[not.ok])
        }
        if (col %nin% features) {
          features = c(col, features)
        }
      }
      # features used for imputation might have NAs, but the learner might not support that
      # we need an extra check, otherwise this might not get noticed by checkLearnerBeforeTrain because
      # we remove observations with NAs in column col before generating the task
      impute.feats = setdiff(features, col)
      if (anyMissing(data[impute.feats]) && !hasLearnerProperties(learner, "missings")) {
        has.na = vlapply(data[impute.feats], anyMissing)
        wrong.feats = clipString(collapse(colnames(data[impute.feats])[has.na], ", "), 50L)
        stopf("Feature(s) '%s' used for imputation has/have missing values, but learner '%s' does not support that!", wrong.feats, learner$id)
      }
      # remove all observations with missing values in column col (which is the target in the imputation task)
      ind = !is.na(data[[col]])
      task = constructor("impute", data = subset(data, subset = ind, select = features), target = col,
        check.data = TRUE, fixup.data = "quiet")
      list(model = train(learner, task), features = features)
    },

    impute = function(data, target, col, model, features) {
      x = data[[col]]
      ind = is.na(x)
      # if no NAs are present in data, we always return it unchanged
      if (all(!ind)) {
        return(x)
      }
      newdata = as.data.frame(data)[ind, features, drop = FALSE]
      p = predict(model, newdata = newdata)$data$response
      replace(x, ind, p)
    },
    args = list(learner = learner, features = features)
  )
}