1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#' @title Prediction object.
#'
#' @description
#' Result from [predict.WrappedModel].
#' Use `as.data.frame` to access all information in a convenient format.
#' The function [getPredictionProbabilities] is useful to access predicted probabilities.
#'
#' The `data` member of the object contains always the following columns:
#' `id`, index numbers of predicted cases from the task, `response`
#' either a numeric or a factor, the predicted response values, `truth`,
#' either a numeric or a factor, the true target values.
#' If probabilities were predicted, as many numeric columns as there were classes named
#' `prob.classname`. If standard errors were predicted, a numeric column named `se`.
#'
#' The constructor `makePrediction` is mainly for internal use.
#'
#' Object members:
#' \describe{
#' \item{predict.type (`character(1)`)}{Type set in [setPredictType].}
#' \item{data ([data.frame])}{See details.}
#' \item{threshold (`numeric(1)`)}{Threshold set in predict function.}
#' \item{task.desc ([TaskDesc])}{Task description object.}
#' \item{time (`numeric(1)`)}{Time learner needed to generate predictions.}
#' \item{error (`character(1)`)}{Any error messages generated by the learner (default NA_character_).}
#' }
#' @name Prediction
#' @rdname Prediction
NULL
#' @keywords internal
#' @rdname Prediction
#' @description
#' Internal, do not use!
#' @export
makePrediction = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
UseMethod("makePrediction")
}
#' @export
makePrediction.RegrTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "truth", "response", "se"))
data$id = id
data$truth = truth
if (predict.type == "response") {
data$response = y
} else {
data$response = y[, 1L]
data$se = y[, 2L]
}
makeS3Obj(c("PredictionRegr", "Prediction"),
predict.type = predict.type,
data = setRowNames(as.data.frame(filterNull(data)), row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
}
#' @export
makePrediction.ClassifTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "truth", "response", "prob"))
data$id = id
# truth can come from a simple "newdata" df. then there might not be all factor levels present
if (!is.null(truth)) {
levels(truth) = union(levels(truth), task.desc$class.levels)
}
data$truth = truth
if (predict.type == "response") {
data$response = y
data = as.data.frame(filterNull(data))
} else {
data$prob = y
data = as.data.frame(filterNull(data))
# fix columnnames for prob if strange chars are in factor levels
indices = stri_detect_fixed(names(data), "prob.")
if (sum(indices) > 0) {
names(data)[indices] = stri_paste("prob.", colnames(y))
}
}
p = makeS3Obj(c("PredictionClassif", "Prediction"),
predict.type = predict.type,
data = setRowNames(data, row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
if (predict.type == "prob") {
# set default threshold to 1/k
if (is.null(predict.threshold)) {
predict.threshold = rep(1 / length(task.desc$class.levels), length(task.desc$class.levels))
names(predict.threshold) = task.desc$class.levels
}
p = setThreshold(p, predict.threshold)
}
return(p)
}
#' @export
makePrediction.MultilabelTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "truth", "response", "prob"))
data$id = id
data$truth = truth
if (predict.type == "response") {
data$response = y
} else {
data$prob = y
}
p = makeS3Obj(c("PredictionMultilabel", "Prediction"),
predict.type = predict.type,
data = setRowNames(as.data.frame(filterNull(data)), row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
if (predict.type == "prob") {
# set default threshold to 0.5
if (is.null(predict.threshold)) {
predict.threshold = rep(0.5, length(task.desc$class.levels))
names(predict.threshold) = task.desc$class.levels
}
p = setThreshold(p, predict.threshold)
}
return(p)
}
#' @export
makePrediction.SurvTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "truth.time", "truth.event", "response"))
data$id = id
# FIXME: recode times
data$truth.time = truth[, 1L]
data$truth.event = truth[, 2L]
data$response = y
makeS3Obj(c("PredictionSurv", "Prediction"),
predict.type = predict.type,
data = setRowNames(as.data.frame(filterNull(data)), row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
}
#' @export
makePrediction.ClusterTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "response", "prob"))
data$id = id
if (predict.type == "response") {
data$response = y
data = as.data.frame(filterNull(data))
} else {
# this is a bit uncool, but as long we only use cl_predict we are OK I guess
class(y) = "matrix"
data$prob = y
data$response = getMaxIndexOfRows(y)
data = as.data.frame(filterNull(data))
}
p = makeS3Obj(c("PredictionCluster", "Prediction"),
predict.type = predict.type,
data = setRowNames(data, row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
return(p)
}
#' @export
makePrediction.CostSensTaskDesc = function(task.desc, row.names, id, truth, predict.type, predict.threshold = NULL, y, time, error = NA_character_, dump = NULL) {
data = namedList(c("id", "response"))
data$id = id
data$response = y
makeS3Obj(c("PredictionCostSens", "Prediction"),
predict.type = predict.type,
data = setRowNames(as.data.frame(filterNull(data)), row.names),
threshold = NA_real_,
task.desc = task.desc,
time = time,
error = error,
dump = dump
)
}
#' @export
print.Prediction = function(x, ...) {
catf("Prediction: %i observations", nrow(x$data))
catf("predict.type: %s", x$predict.type)
catf("threshold: %s", collapse(sprintf("%s=%.2f", names(x$threshold), x$threshold)))
catf("time: %.2f", x$time)
if (!is.na(x$error)) catf("errors: %s", x$error)
printHead(as.data.frame(x), ...)
}
|