1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#' @export
as.data.frame.Prediction = function(x, row.names = NULL, optional = FALSE, ...) {
x$data
}
#' Get probabilities for some classes.
#'
#' @template arg_pred
#' @param cl ([character])\cr
#' Names of classes.
#' Default is either all classes for multi-class / multilabel problems or the positive class for binary classification.
#' @return ([data.frame]) with numerical columns or a numerical vector if length of `cl` is 1.
#' Order of columns is defined by `cl`.
#' @export
#' @family predict
#' @examples
#' task = makeClassifTask(data = iris, target = "Species")
#' lrn = makeLearner("classif.lda", predict.type = "prob")
#' mod = train(lrn, task)
#' # predict probabilities
#' pred = predict(mod, newdata = iris)
#'
#' # Get probabilities for all classes
#' head(getPredictionProbabilities(pred))
#'
#' # Get probabilities for a subset of classes
#' head(getPredictionProbabilities(pred, c("setosa", "virginica")))
getPredictionProbabilities = function(pred, cl) {
assertClass(pred, classes = "Prediction")
ttype = pred$task.desc$type
if (ttype %nin% c("classif", "cluster", "multilabel")) {
stop("Prediction was not generated from a ClassifTask, MultilabelTask or ClusterTask!")
}
if (missing(cl)) {
if (ttype == "classif") {
if (length(pred$task.desc$class.levels) == 2L) {
cl = pred$task.desc$positive
} else {
cl = pred$task.desc$class.levels
}
} else if (ttype == "multilabel") {
cl = pred$task.desc$class.levels
}
} else {
if (ttype == "cluster") {
stopf("You can only ask for probs of all classes currently in clustering!")
} else {
assertCharacter(cl, any.missing = FALSE)
}
}
if (pred$predict.type != "prob") {
stop("Probabilities not present in Prediction object!")
}
cns = colnames(pred$data)
if (ttype %in% c("classif", "multilabel")) {
cl2 = stri_paste("prob", cl, sep = ".")
if (!all(cl2 %in% cns)) {
stopf("Trying to get probabilities for nonexistant classes: %s", collapse(cl))
}
y = pred$data[, cl2]
if (length(cl) > 1L) {
colnames(y) = cl
}
} else if (ttype == "cluster") {
y = pred$data[, stri_detect_regex(cns, "prob\\.")]
colnames(y) = seq_col(y)
}
return(y)
}
#' @title Get summarizing task description from prediction.
#'
#' @description See title.
#'
#' @template arg_pred
#' @return ret_taskdesc
#' @export
#' @family predict
getPredictionTaskDesc = function(pred) {
assertClass(pred, "Prediction")
pred$task.desc
}
#' Deprecated, use `getPredictionProbabilities` instead.
#' @param pred Deprecated.
#' @param cl Deprecated.
#' @export
getProbabilities = function(pred, cl) {
.Deprecated("getPredictionProbabilities")
getPredictionProbabilities(pred, cl)
}
# c.Prediction = function(...) {
# preds = list(...)
# id = Reduce(c, lapply(preds, function(x) x@id))
# response = Reduce(c, lapply(preds, function(x) x@response))
# target = Reduce(c, lapply(preds, function(x) x@target))
# weights = Reduce(c, lapply(preds, function(x) x@weights))
# prob = Reduce(rbind, lapply(preds, function(x) x@prob))
# return(new("Prediction", task.desc = preds[[1]]@desc, id = id, response = response, target = target, weights = weights, prob = prob));
# }
#' @title Get response / truth from prediction object.
#'
#' @description
#' The following types are returned, depending on task type:
#' \tabular{ll}{
#' classif \tab factor\cr
#' regr \tab numeric\cr
#' se \tab numeric\cr
#' cluster \tab integer\cr
#' surv \tab numeric\cr
#' multilabel \tab logical matrix, columns named with labels\cr
#' }
#'
#' @template arg_pred
#' @return See above.
#' @export
#' @family predict
getPredictionResponse = function(pred) {
UseMethod("getPredictionResponse")
}
#' @export
getPredictionResponse.default = function(pred) {
# this should work for classif, regr and cluster and surv
pred$data[["response"]]
}
#' @export
getPredictionResponse.PredictionMultilabel = function(pred) {
i = stri_detect_regex(colnames(pred$data), "^response\\.")
m = as.matrix(pred$data[, i])
setColNames(m, pred$task.desc$class.levels)
}
#' @rdname getPredictionResponse
#' @export
getPredictionSE = function(pred) {
UseMethod("getPredictionSE")
}
#' @export
getPredictionSE.default = function(pred) {
pred$data[["se"]]
}
#' @rdname getPredictionResponse
#' @export
getPredictionTruth = function(pred) {
UseMethod("getPredictionTruth")
}
#' @export
getPredictionTruth.default = function(pred) {
pred$data[["truth"]]
}
#' @export
getPredictionTruth.PredictionCluster = function(pred) {
stop("There is no truth for cluster tasks")
}
#' @export
getPredictionTruth.PredictionSurv = function(pred) {
Surv(pred$data$truth.time, pred$data$truth.event, type = "right")
}
#' @export
getPredictionTruth.PredictionMultilabel = function(pred) {
i = stri_detect_regex(colnames(pred$data), "^truth\\.")
m = as.matrix(pred$data[, i])
setColNames(m, pred$task.desc$class.levels)
}
#' @title Return the error dump of a failed Prediction.
#'
#' @description
#' Returns the error dump that can be used with `debugger()` to evaluate errors.
#' If [configureMlr] configuration `on.error.dump` is `FALSE` or if the
#' prediction did not fail, this returns `NULL`.
#'
#' @template arg_pred
#' @return (`last.dump`).
#' @family debug
#' @export
getPredictionDump = function(pred) {
pred$dump
}
|