File: RLearner_classif_J48.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (41 lines) | stat: -rw-r--r-- 1,955 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# checked props
#' @export
makeRLearner.classif.J48 = function() {
  makeRLearnerClassif(
    cl = "classif.J48",
    package = "RWeka",
    par.set = makeParamSet(
      makeLogicalLearnerParam(id = "U", default = FALSE),
      makeLogicalLearnerParam(id = "O", default = FALSE),
      makeNumericLearnerParam(id = "C", default = 0.25, lower = .Machine$double.eps, upper = 1 - .Machine$double.eps, requires = quote(!U && !R)),
      makeIntegerLearnerParam(id = "M", default = 2L, lower = 1L),
      makeLogicalLearnerParam(id = "R", default = FALSE, requires = quote(!U)),
      makeIntegerLearnerParam(id = "N", default = 3L, lower = 2L, requires = quote(!U && R)),
      makeLogicalLearnerParam(id = "B", default = FALSE),
      makeLogicalLearnerParam(id = "S", default = FALSE, requires = quote(!U)),
      makeLogicalLearnerParam(id = "L", default = FALSE),
      makeLogicalLearnerParam(id = "A", default = FALSE),
      makeLogicalLearnerParam(id = "J", default = FALSE),
      makeIntegerLearnerParam(id = "Q", tunable = FALSE),
      makeLogicalLearnerParam(id = "output-debug-info", default = FALSE, tunable = FALSE)
    ),
    properties = c("twoclass", "multiclass", "missings", "numerics", "factors", "prob"),
    name = "J48 Decision Trees",
    short.name = "j48",
    note = "NAs are directly passed to WEKA with `na.action = na.pass`.",
    callees = c("J48", "Weka_control")
  )
}

#' @export
trainLearner.classif.J48 = function(.learner, .task, .subset, .weights = NULL, ...) {
  ctrl = RWeka::Weka_control(..., Q = as.integer(runif(1, min = -.Machine$integer.max, max = .Machine$integer.max)))
  f = getTaskFormula(.task)
  RWeka::J48(f, data = getTaskData(.task, .subset), control = ctrl, na.action = na.pass)
}

#' @export
predictLearner.classif.J48 = function(.learner, .model, .newdata, ...) {
  type = switch(.learner$predict.type, prob = "prob", "class")
  predict(.model$learner.model, newdata = .newdata, type = type, ...)
}