File: RLearner_classif_lvq1.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (34 lines) | stat: -rw-r--r-- 981 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# FIXME: parset
#' @export
makeRLearner.classif.lvq1 = function() {
  makeRLearnerClassif(
    cl = "classif.lvq1",
    package = "class",
    par.set = makeParamSet(),
    properties = c("twoclass", "multiclass", "numerics"),
    name = "Learning Vector Quantization",
    short.name = "lvq1",
    callees = c("lvq1", "lvqinit", "lvqtest")
  )
}

#' @export
trainLearner.classif.lvq1 = function(.learner, .task, .subset, .weights = NULL, ...) {

  d = getTaskData(.task, .subset, target.extra = TRUE)
  cdbk.args = insert(list(), list(...), c("size", "k", "prior"))
  cdbk.args$x = d$data
  cdbk.args$cl = d$target
  codebk = do.call(class::lvqinit, cdbk.args)

  lvq.args = insert(list(), list(...), c("niter", "alpha"))
  lvq.args$x = d$data
  lvq.args$cl = d$target
  lvq.args$codebk = codebk
  do.call(class::lvq1, lvq.args)
}

#' @export
predictLearner.classif.lvq1 = function(.learner, .model, .newdata, ...) {
  class::lvqtest(.model$learner.model, test = .newdata, ...)
}