File: RLearner_classif_qda.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (34 lines) | stat: -rw-r--r-- 1,307 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#' @export
makeRLearner.classif.qda = function() {
  makeRLearnerClassif(
    cl = "classif.qda",
    package = "MASS",
    par.set = makeParamSet(
      makeDiscreteLearnerParam(id = "method", default = "moment", values = c("moment", "mle", "mve", "t")),
      makeNumericLearnerParam(id = "nu", default = 5, lower = 2, requires = quote(method == "t")),
      makeDiscreteLearnerParam(id = "predict.method", values = c("plug-in", "predictive", "debiased"),
        default = "plug-in", when = "predict")
    ),
    properties = c("twoclass", "multiclass", "numerics", "factors", "prob"),
    name = "Quadratic Discriminant Analysis",
    short.name = "qda",
    note = "Learner parameter `predict.method` maps to `method` in `predict.qda`.",
    callees = c("qda", "predict.qda")
  )
}

#' @export
trainLearner.classif.qda = function(.learner, .task, .subset, .weights = NULL, ...) {
  f = getTaskFormula(.task)
  MASS::qda(f, data = getTaskData(.task, .subset, recode.target = "drop.levels"), ...)
}

#' @export
predictLearner.classif.qda = function(.learner, .model, .newdata, predict.method = "plug-in", ...) {
  p = predict(.model$learner.model, newdata = .newdata, method = predict.method, ...)
  if (.learner$predict.type == "response") {
    return(p$class)
  } else {
    return(p$posterior)
  }
}