File: RLearner_classif_xgboost.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (169 lines) | stat: -rw-r--r-- 8,370 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#' @export
makeRLearner.classif.xgboost = function() {
  makeRLearnerClassif(
    cl = "classif.xgboost",
    package = "xgboost",
    par.set = makeParamSet(
      # we pass all of what goes in 'params' directly to ... of xgboost
      # makeUntypedLearnerParam(id = "params", default = list()),
      makeDiscreteLearnerParam(id = "booster", default = "gbtree", values = c("gbtree", "gblinear", "dart")),
      makeUntypedLearnerParam(id = "watchlist", default = NULL, tunable = FALSE),
      makeNumericLearnerParam(id = "eta", default = 0.3, lower = 0, upper = 1),
      makeNumericLearnerParam(id = "gamma", default = 0, lower = 0),
      makeIntegerLearnerParam(id = "max_depth", default = 6L, lower = 0L),
      makeNumericLearnerParam(id = "min_child_weight", default = 1, lower = 0),
      makeNumericLearnerParam(id = "subsample", default = 1, lower = 0, upper = 1),
      makeNumericLearnerParam(id = "colsample_bytree", default = 1, lower = 0, upper = 1),
      makeNumericLearnerParam(id = "colsample_bylevel", default = 1, lower = 0, upper = 1),
      makeIntegerLearnerParam(id = "num_parallel_tree", default = 1L, lower = 1L),
      makeNumericLearnerParam(id = "lambda", default = 1, lower = 0),
      makeNumericLearnerParam(id = "lambda_bias", default = 0, lower = 0),
      makeNumericLearnerParam(id = "alpha", default = 0, lower = 0),
      makeUntypedLearnerParam(id = "objective", default = "binary:logistic", tunable = FALSE),
      makeUntypedLearnerParam(id = "eval_metric", default = "error", tunable = FALSE),
      makeNumericLearnerParam(id = "base_score", default = 0.5, tunable = FALSE),
      makeNumericLearnerParam(id = "max_delta_step", lower = 0, default = 0),
      makeNumericLearnerParam(id = "missing", default = NA, tunable = FALSE, when = "both", special.vals = list(NA, NA_real_, NULL)),
      makeIntegerVectorLearnerParam(id = "monotone_constraints", default = 0, lower = -1, upper = 1),
      makeNumericLearnerParam(id = "tweedie_variance_power", lower = 1, upper = 2, default = 1.5, requires = quote(objective == "reg:tweedie")),
      makeIntegerLearnerParam(id = "nthread", lower = 1L, tunable = FALSE),
      makeIntegerLearnerParam(id = "nrounds", lower = 1L),
      makeUntypedLearnerParam(id = "feval", default = NULL, tunable = FALSE),
      makeIntegerLearnerParam(id = "verbose", default = 1L, lower = 0L, upper = 2L, tunable = FALSE),
      makeIntegerLearnerParam(id = "print_every_n", default = 1L, lower = 1L, tunable = FALSE, requires = quote(verbose == 1L)),
      makeIntegerLearnerParam(id = "early_stopping_rounds", default = NULL, lower = 1L, special.vals = list(NULL), tunable = FALSE),
      makeLogicalLearnerParam(id = "maximize", default = NULL, special.vals = list(NULL), tunable = FALSE),
      makeDiscreteLearnerParam(id = "sample_type", default = "uniform", values = c("uniform", "weighted"), requires = quote(booster == "dart")),
      makeDiscreteLearnerParam(id = "normalize_type", default = "tree", values = c("tree", "forest"), requires = quote(booster == "dart")),
      makeNumericLearnerParam(id = "rate_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
      makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
      makeNumericLearnerParam(id = "scale_pos_weight", default = 1),
      makeLogicalLearnerParam(id = "refresh_leaf", default = TRUE),
      makeDiscreteLearnerParam(id = "feature_selector", default = "cyclic", values = c("cyclic", "shuffle", "random", "greedy", "thrifty")),
      makeIntegerLearnerParam(id = "top_k", default = 0, lower = 0),
      makeDiscreteLearnerParam(id = "predictor", default = "cpu_predictor", values = c("cpu_predictor", "gpu_predictor")),
      makeUntypedLearnerParam(id = "updater"), # Default depends on the selected booster
      makeNumericLearnerParam(id = "sketch_eps", default = 0.03, lower = 0, upper = 1),
      makeLogicalLearnerParam(id = "one_drop", default = FALSE, requires = quote(booster == "dart")),
      makeDiscreteLearnerParam(id = "tree_method", default = "auto", values = c("auto", "exact", "approx", "hist", "gpu_hist"), requires = quote(booster != "gblinear")),
      makeDiscreteLearnerParam(id = "grow_policy", default = "depthwise", values = c("depthwise", "lossguide"), requires = quote(tree_method == "hist")),
      makeIntegerLearnerParam(id = "max_leaves", default = 0L, lower = 0L, requires = quote(grow_policy == "lossguide")),
      makeIntegerLearnerParam(id = "max_bin", default = 256L, lower = 2L, requires = quote(tree_method == "hist")),
      makeUntypedLearnerParam(id = "callbacks", default = list(), tunable = FALSE)
    ),
    par.vals = list(nrounds = 1L, verbose = 0L),
    properties = c("twoclass", "multiclass", "numerics", "prob", "weights", "missings", "featimp"),
    name = "eXtreme Gradient Boosting",
    short.name = "xgboost",
    note = "All settings are passed directly, rather than through `xgboost`'s `params` argument. `nrounds` has been set to `1` and `verbose` to `0` by default. `num_class` is set internally, so do not set this manually.",
    callees = "xgboost"
  )
}

#' @export
trainLearner.classif.xgboost = function(.learner, .task, .subset, .weights = NULL, ...) {

  td = getTaskDesc(.task)
  parlist = list(...)
  nc = length(td$class.levels)
  nlvls = length(td$class.levels)

  if (is.null(parlist$objective)) {
    parlist$objective = if (nlvls == 2L) "binary:logistic" else "multi:softprob"
  }

  if (.learner$predict.type == "prob" && parlist$objective == "multi:softmax") {
    stop("objective = 'multi:softmax' does not work with predict.type = 'prob'")
  }

  # if we use softprob or softmax as objective we have to add the number of classes 'num_class'
  if (parlist$objective %in% c("multi:softprob", "multi:softmax")) {
    parlist$num_class = nc
  }

  task.data = getTaskData(.task, .subset, target.extra = TRUE)
  label = match(as.character(task.data$target), td$class.levels) - 1

  # recode to 0:1 to that for the binary case the positive class translates to 1 (https://github.com/mlr-org/mlr3learners/issues/32)
  # task.data$target is guaranteed to have the factor levels in the right order
  label = nlvls - as.integer(task.data$target)
  parlist$data = xgboost::xgb.DMatrix(data = data.matrix(task.data$data), label = label)

  if (!is.null(.weights)) {
    xgboost::setinfo(parlist$data, "weight", .weights)
  }

  if (is.null(parlist$watchlist)) {
    parlist$watchlist = list(train = parlist$data)
  }

  do.call(xgboost::xgb.train, parlist)
}

#' @export
predictLearner.classif.xgboost = function(.learner, .model, .newdata, ...) {

  td = .model$task.desc
  m = .model$learner.model
  cls = rev(td$class.levels)
  nc = length(cls)
  obj = .learner$par.vals$objective
  nlvls = length(cls)

  if (is.null(obj)) {
    .learner$par.vals$objective = if (nlvls == 2L) "binary:logistic" else "multi:softprob"
  }

  p = predict(m, newdata = data.matrix(.newdata), ...)

  if (nc == 2L) { # binaryclass
    if (.learner$par.vals$objective == "multi:softprob") {
      y = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
      colnames(y) = cls
    } else {
      y = matrix(0, ncol = 2, nrow = nrow(.newdata))
      colnames(y) = cls
      y[, 1L] = 1 - p
      y[, 2L] = p
    }
    if (.learner$predict.type == "prob") {
      return(y)
    } else {
      p = colnames(y)[max.col(y)]
      names(p) = NULL
      p = factor(p, levels = colnames(y))
      return(p)
    }
  } else { # multiclass
    if (.learner$par.vals$objective == "multi:softmax") {
      p = as.factor(p) # special handling for multi:softmax which directly predicts class levels
      levels(p) = cls
      return(p)
    } else {
      p = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
      colnames(p) = cls
      if (.learner$predict.type == "prob") {
        return(p)
      } else {
        ind = max.col(p)
        cns = colnames(p)
        return(factor(cns[ind], levels = cns))
      }
    }
  }
}

#' @export
getFeatureImportanceLearner.classif.xgboost = function(.learner, .model, ...) {
  mod = getLearnerModel(.model, more.unwrap = TRUE)
  imp = xgboost::xgb.importance(
    feature_names = .model$features,
    model = mod, ...)

  if (is.null(imp$Gain)) {
    fiv = imp$Weight
  } else {
    fiv = imp$Gain
  }
  setNames(fiv, imp$Feature)
}