1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#' @export
makeRLearner.classif.xgboost = function() {
makeRLearnerClassif(
cl = "classif.xgboost",
package = "xgboost",
par.set = makeParamSet(
# we pass all of what goes in 'params' directly to ... of xgboost
# makeUntypedLearnerParam(id = "params", default = list()),
makeDiscreteLearnerParam(id = "booster", default = "gbtree", values = c("gbtree", "gblinear", "dart")),
makeUntypedLearnerParam(id = "watchlist", default = NULL, tunable = FALSE),
makeNumericLearnerParam(id = "eta", default = 0.3, lower = 0, upper = 1),
makeNumericLearnerParam(id = "gamma", default = 0, lower = 0),
makeIntegerLearnerParam(id = "max_depth", default = 6L, lower = 0L),
makeNumericLearnerParam(id = "min_child_weight", default = 1, lower = 0),
makeNumericLearnerParam(id = "subsample", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bytree", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bylevel", default = 1, lower = 0, upper = 1),
makeIntegerLearnerParam(id = "num_parallel_tree", default = 1L, lower = 1L),
makeNumericLearnerParam(id = "lambda", default = 1, lower = 0),
makeNumericLearnerParam(id = "lambda_bias", default = 0, lower = 0),
makeNumericLearnerParam(id = "alpha", default = 0, lower = 0),
makeUntypedLearnerParam(id = "objective", default = "binary:logistic", tunable = FALSE),
makeUntypedLearnerParam(id = "eval_metric", default = "error", tunable = FALSE),
makeNumericLearnerParam(id = "base_score", default = 0.5, tunable = FALSE),
makeNumericLearnerParam(id = "max_delta_step", lower = 0, default = 0),
makeNumericLearnerParam(id = "missing", default = NA, tunable = FALSE, when = "both", special.vals = list(NA, NA_real_, NULL)),
makeIntegerVectorLearnerParam(id = "monotone_constraints", default = 0, lower = -1, upper = 1),
makeNumericLearnerParam(id = "tweedie_variance_power", lower = 1, upper = 2, default = 1.5, requires = quote(objective == "reg:tweedie")),
makeIntegerLearnerParam(id = "nthread", lower = 1L, tunable = FALSE),
makeIntegerLearnerParam(id = "nrounds", lower = 1L),
makeUntypedLearnerParam(id = "feval", default = NULL, tunable = FALSE),
makeIntegerLearnerParam(id = "verbose", default = 1L, lower = 0L, upper = 2L, tunable = FALSE),
makeIntegerLearnerParam(id = "print_every_n", default = 1L, lower = 1L, tunable = FALSE, requires = quote(verbose == 1L)),
makeIntegerLearnerParam(id = "early_stopping_rounds", default = NULL, lower = 1L, special.vals = list(NULL), tunable = FALSE),
makeLogicalLearnerParam(id = "maximize", default = NULL, special.vals = list(NULL), tunable = FALSE),
makeDiscreteLearnerParam(id = "sample_type", default = "uniform", values = c("uniform", "weighted"), requires = quote(booster == "dart")),
makeDiscreteLearnerParam(id = "normalize_type", default = "tree", values = c("tree", "forest"), requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "rate_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "scale_pos_weight", default = 1),
makeLogicalLearnerParam(id = "refresh_leaf", default = TRUE),
makeDiscreteLearnerParam(id = "feature_selector", default = "cyclic", values = c("cyclic", "shuffle", "random", "greedy", "thrifty")),
makeIntegerLearnerParam(id = "top_k", default = 0, lower = 0),
makeDiscreteLearnerParam(id = "predictor", default = "cpu_predictor", values = c("cpu_predictor", "gpu_predictor")),
makeUntypedLearnerParam(id = "updater"), # Default depends on the selected booster
makeNumericLearnerParam(id = "sketch_eps", default = 0.03, lower = 0, upper = 1),
makeLogicalLearnerParam(id = "one_drop", default = FALSE, requires = quote(booster == "dart")),
makeDiscreteLearnerParam(id = "tree_method", default = "auto", values = c("auto", "exact", "approx", "hist", "gpu_hist"), requires = quote(booster != "gblinear")),
makeDiscreteLearnerParam(id = "grow_policy", default = "depthwise", values = c("depthwise", "lossguide"), requires = quote(tree_method == "hist")),
makeIntegerLearnerParam(id = "max_leaves", default = 0L, lower = 0L, requires = quote(grow_policy == "lossguide")),
makeIntegerLearnerParam(id = "max_bin", default = 256L, lower = 2L, requires = quote(tree_method == "hist")),
makeUntypedLearnerParam(id = "callbacks", default = list(), tunable = FALSE)
),
par.vals = list(nrounds = 1L, verbose = 0L),
properties = c("twoclass", "multiclass", "numerics", "prob", "weights", "missings", "featimp"),
name = "eXtreme Gradient Boosting",
short.name = "xgboost",
note = "All settings are passed directly, rather than through `xgboost`'s `params` argument. `nrounds` has been set to `1` and `verbose` to `0` by default. `num_class` is set internally, so do not set this manually.",
callees = "xgboost"
)
}
#' @export
trainLearner.classif.xgboost = function(.learner, .task, .subset, .weights = NULL, ...) {
td = getTaskDesc(.task)
parlist = list(...)
nc = length(td$class.levels)
nlvls = length(td$class.levels)
if (is.null(parlist$objective)) {
parlist$objective = if (nlvls == 2L) "binary:logistic" else "multi:softprob"
}
if (.learner$predict.type == "prob" && parlist$objective == "multi:softmax") {
stop("objective = 'multi:softmax' does not work with predict.type = 'prob'")
}
# if we use softprob or softmax as objective we have to add the number of classes 'num_class'
if (parlist$objective %in% c("multi:softprob", "multi:softmax")) {
parlist$num_class = nc
}
task.data = getTaskData(.task, .subset, target.extra = TRUE)
label = match(as.character(task.data$target), td$class.levels) - 1
# recode to 0:1 to that for the binary case the positive class translates to 1 (https://github.com/mlr-org/mlr3learners/issues/32)
# task.data$target is guaranteed to have the factor levels in the right order
label = nlvls - as.integer(task.data$target)
parlist$data = xgboost::xgb.DMatrix(data = data.matrix(task.data$data), label = label)
if (!is.null(.weights)) {
xgboost::setinfo(parlist$data, "weight", .weights)
}
if (is.null(parlist$watchlist)) {
parlist$watchlist = list(train = parlist$data)
}
do.call(xgboost::xgb.train, parlist)
}
#' @export
predictLearner.classif.xgboost = function(.learner, .model, .newdata, ...) {
td = .model$task.desc
m = .model$learner.model
cls = rev(td$class.levels)
nc = length(cls)
obj = .learner$par.vals$objective
nlvls = length(cls)
if (is.null(obj)) {
.learner$par.vals$objective = if (nlvls == 2L) "binary:logistic" else "multi:softprob"
}
p = predict(m, newdata = data.matrix(.newdata), ...)
if (nc == 2L) { # binaryclass
if (.learner$par.vals$objective == "multi:softprob") {
y = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(y) = cls
} else {
y = matrix(0, ncol = 2, nrow = nrow(.newdata))
colnames(y) = cls
y[, 1L] = 1 - p
y[, 2L] = p
}
if (.learner$predict.type == "prob") {
return(y)
} else {
p = colnames(y)[max.col(y)]
names(p) = NULL
p = factor(p, levels = colnames(y))
return(p)
}
} else { # multiclass
if (.learner$par.vals$objective == "multi:softmax") {
p = as.factor(p) # special handling for multi:softmax which directly predicts class levels
levels(p) = cls
return(p)
} else {
p = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(p) = cls
if (.learner$predict.type == "prob") {
return(p)
} else {
ind = max.col(p)
cns = colnames(p)
return(factor(cns[ind], levels = cns))
}
}
}
}
#' @export
getFeatureImportanceLearner.classif.xgboost = function(.learner, .model, ...) {
mod = getLearnerModel(.model, more.unwrap = TRUE)
imp = xgboost::xgb.importance(
feature_names = .model$features,
model = mod, ...)
if (is.null(imp$Gain)) {
fiv = imp$Weight
} else {
fiv = imp$Gain
}
setNames(fiv, imp$Feature)
}
|