File: RLearner_regr_IBk.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (32 lines) | stat: -rw-r--r-- 1,228 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#' @export
makeRLearner.regr.IBk = function() {
  makeRLearnerRegr(
    cl = "regr.IBk",
    package = "RWeka",
    par.set = makeParamSet(
      makeLogicalLearnerParam(id = "I", default = FALSE),
      makeLogicalLearnerParam(id = "F", default = FALSE),
      makeIntegerLearnerParam(id = "K", lower = 1L, default = 1L),
      makeLogicalLearnerParam(id = "E", default = FALSE),
      makeIntegerLearnerParam(id = "W", lower = 0L),
      makeLogicalLearnerParam(id = "X", default = FALSE),
      makeUntypedLearnerParam(id = "A", default = "weka.core.neighboursearch.LinearNNSearch"),
      makeLogicalLearnerParam(id = "output-debug-info", default = FALSE, tunable = FALSE)
    ),
    properties = c("numerics", "factors"),
    name = "K-Nearest Neighbours",
    short.name = "ibk",
    callees = c("IBk", "Weka_control")
  )
}

#' @export
trainLearner.regr.IBk = function(.learner, .task, .subset, .weights = NULL, ...) {
  ctrl = RWeka::Weka_control(...)
  RWeka::IBk(getTaskFormula(.task), data = getTaskData(.task, .subset), control = ctrl, na.action = na.pass)
}

#' @export
predictLearner.regr.IBk = function(.learner, .model, .newdata, ...) {
  predict(.model$learner.model, newdata = .newdata, type = "class", ...)
}