File: RLearner_regr_lm.R

package info (click to toggle)
r-cran-mlr 2.19.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,264 kB
  • sloc: ansic: 65; sh: 13; makefile: 5
file content (37 lines) | stat: -rw-r--r-- 1,108 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#' @export
makeRLearner.regr.lm = function() {
  makeRLearnerRegr(
    cl = "regr.lm",
    package = "stats",
    par.set = makeParamSet(
      makeNumericLearnerParam(id = "tol", default = 1e-7, lower = 0),
      makeLogicalLearnerParam(id = "singular.ok", default = TRUE, tunable = FALSE)
    ),
    properties = c("numerics", "factors", "se", "weights"),
    name = "Simple Linear Regression",
    short.name = "lm",
    callees = c("lm", "lm.fit", "lm.wfit")
  )
}

#' @export
trainLearner.regr.lm = function(.learner, .task, .subset, .weights = NULL, ...) {
  d = getTaskData(.task, .subset)
  if (is.null(.weights)) {
    f = getTaskFormula(.task)
    stats::lm(f, data = d, ...)
  } else {
    f = getTaskFormula(.task)
    stats::lm(f, data = d, weights = .weights, ...)
  }
}

#' @export
predictLearner.regr.lm = function(.learner, .model, .newdata, ...) {
  if (.learner$predict.type == "response") {
    predict(.model$learner.model, newdata = .newdata, se.fit = FALSE, ...)
  } else {
    p = predict(.model$learner.model, newdata = .newdata, se.fit = TRUE, ...)
    cbind(p$fit, p$se.fit)
  }
}