1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
instantiateResampleInstance = function(desc, size, task = NULL, coords) {
UseMethod("instantiateResampleInstance")
}
instantiateResampleInstance.HoldoutDesc = function(desc, size, task = NULL, coords) {
inds = sample(size, size * desc$split)
makeResampleInstanceInternal(desc, size, train.inds = list(inds))
}
instantiateResampleInstance.CVDesc = function(desc, size, task = NULL, coords) {
# Random sampling CV
if (!desc$fixed) {
if (desc$iters > size) {
stopf("Cannot use more folds (%i) than size (%i)!", desc$iters, size)
}
test.inds = chunk(seq_len(size), shuffle = TRUE, n.chunks = desc$iters)
makeResampleInstanceInternal(desc, size, test.inds = test.inds)
} else {
# CV with only predefined indices ("fixed")
if (is.null(task$blocking)) {
stopf("To use blocking in resampling, you need to pass a factor variable when creating the task!")
}
# In the inner call, the implementation is able to adapt by automatically reducing one level (see line if (0 %in% length.test.inds)).
# So having always `length(iters) = length(levels(task$blocking)` is the most safe environment for the function to work.
if (desc$iters != length(levels(task$blocking))) {
desc$iters = length(levels(task$blocking))
warningf("Adjusting levels to match number of blocking levels.")
}
levs = levels(task$blocking)
n.levels = length(levs)
# Why do we need the helper desc? If we would call 'instantiateResampleInstance()' here,
# we would call the function within itself and will receive an 'error-c-stack-usage-is-too-close-to-the-limit' error
# So we simply change the class name to mimic a new function..
attr(desc, "class")[1] = "CVHelperDesc"
# create fake ResampleInstance
inst = instantiateResampleInstance(desc, n.levels, task)
attr(desc, "class")[1] = "CVDesc"
# now exchange block indices with indices of elements of this block and shuffle
test.inds = lapply(inst$test.inds, function(i) which(task$blocking %in% levs[i]))
# Nested resampling: We need to create a list with length(levels) first.
# Then one fold will be length(0) because we are missing one factor level because we are in the inner level
# We check for this and remove this fold
# There is no other way to do this. If we initially set "desc$iters" to length(levels) - 1, test.inds will not be created correctly
length.test.inds = unlist(lapply(test.inds, function(x) length(x)))
if (0 %in% length.test.inds) {
index = match(0, length.test.inds)
test.inds[[index]] = NULL
size = length(task$env$data[, 1])
desc$iters = length(test.inds)
}
makeResampleInstanceInternal(desc, size, test.inds = test.inds)
}
}
instantiateResampleInstance.SpCVDesc = function(desc, size, task = NULL, coords) {
if (is.null(task)) {
stopf("Please provide a task.")
}
if (is.null(task$coordinates)) {
stopf("Please provide suitable coordinates for SpCV. See ?Task for help.")
}
# perform kmeans clustering
inds = kmeans(task$coordinates, centers = desc$iters)
inds = factor(inds$cluster)
# uses resulting factor levels from kmeans clustering to set up a list of
# length x (x = folds) with row indices of the data referring to which fold
# each observations is assigned to
test.inds = lapply(levels(inds), function(x, spl) {
which(spl == x)
}, spl = inds)
makeResampleInstanceInternal(desc, size, test.inds = test.inds)
}
instantiateResampleInstance.LOODesc = function(desc, size, task = NULL, coords) {
desc$iters = size
makeResampleInstanceInternal(desc, size, test.inds = as.list(seq_len(size)))
}
instantiateResampleInstance.SubsampleDesc = function(desc, size, task = NULL, coords) {
inds = lapply(seq_len(desc$iters), function(x) sample(size, size * desc$split))
makeResampleInstanceInternal(desc, size, train.inds = inds)
}
instantiateResampleInstance.BootstrapDesc = function(desc, size, task = NULL, coords) {
inds = lapply(seq_len(desc$iters), function(x) sample(size, size, replace = TRUE))
makeResampleInstanceInternal(desc, size, train.inds = inds)
}
instantiateResampleInstance.RepCVDesc = function(desc, size, task = NULL, coords) {
folds = desc$iters / desc$reps
d = makeResampleDesc("CV", iters = folds, blocking.cv = desc$blocking.cv, fixed = desc$fixed)
i = replicate(desc$reps, makeResampleInstance(d, size = size), simplify = FALSE)
train.inds = Reduce(c, lapply(i, function(j) j$train.inds))
test.inds = Reduce(c, lapply(i, function(j) j$test.inds))
g = as.factor(rep(seq_len(desc$reps), each = folds))
makeResampleInstanceInternal(desc, size, train.inds = train.inds, test.inds = test.inds, group = g)
}
instantiateResampleInstance.SpRepCVDesc = function(desc, size, task = NULL, coords) {
folds = desc$iters / desc$reps
d = makeResampleDesc("SpCV", iters = folds)
i = replicate(desc$reps, makeResampleInstance(d, task = task), simplify = FALSE)
train.inds = Reduce(c, lapply(i, function(j) j$train.inds))
test.inds = Reduce(c, lapply(i, function(j) j$test.inds))
g = as.factor(rep(seq_len(desc$reps), each = folds))
makeResampleInstanceInternal(desc, size, train.inds = train.inds, test.inds = test.inds, group = g)
}
instantiateResampleInstance.FixedWindowCVDesc = function(desc, size, task = NULL, coords) {
makeResamplingWindow(desc, size, task, coords, "FixedWindowCV")
}
instantiateResampleInstance.GrowingWindowCVDesc = function(desc, size, task = NULL, coords) {
makeResamplingWindow(desc, size, task, coords, "GrowingWindowCV")
}
instantiateResampleInstance.CVHelperDesc = function(desc, size, task = NULL, coords) {
if (desc$iters > size) {
stopf("Cannot use more folds (%i) than size (%i)!", desc$iters, size)
}
test.inds = chunk(seq_len(size), shuffle = TRUE, n.chunks = desc$iters)
makeResampleInstanceInternal(desc, size, test.inds = test.inds)
}
|