1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
#' @title Create (spatial) resampling plot objects.
#'
#' @description Visualize partitioning of resample objects with spatial
#' information.
#' @import ggplot2
#' @family plot
#' @author Patrick Schratz
#' @param task [Task] \cr
#' Task object.
#' @param resample [ResampleResult] or named `list` with (multiple)
#' [ResampleResult]\cr
#' As returned by [resample].
#' @param crs [integer]\cr
#' Coordinate reference system (EPSG code number) for the supplied
#' coordinates in the `Task`.
#' @param datum [integer]\cr
#' Coordinate reference system which should be used in the resulting map.
#' @param repetitions [integer]\cr
#' Number of repetitions.
#' @param color.train [character]\cr
#' Color for train set.
#' @param color.test [character]\cr
#' Color for test set.
#' @param point.size [integer]\cr
#' Point size.
#' @param axis.text.size [integer]\cr
#' Font size of axis labels.
#' @param x.axis.breaks [numeric]\cr
#' Custom x axis breaks
#' @param y.axis.breaks [numeric]\cr
#' Custom y axis breaks
#'
#' @return ([list] of `2L` containing (1) multiple `gg`` objects and (2) their
#' corresponding labels.
#'
#' @details
#' If a named list is given to `resample`, names will appear in the title of
#' each fold.
#' If multiple inputs are given to `resample`, these must be named.
#'
#' This function makes a hard cut at five columns of the resulting gridded plot.
#' This means if the `resample` object consists of `folds > 5`, these folds will
#' be put into the new row.
#'
#' For file saving, we recommend to use [cowplot::save_plot].
#'
#' When viewing the resulting plot in RStudio, margins may appear to be
#' different than they really are.
#' Make sure to save the file to disk and inspect the image.
#'
#' When modifying axis breaks, negative values need to be used if the area is
#' located in either the western or southern hemisphere.
#' Use positive values for the northern and eastern hemisphere.
#'
#' @section CRS:
#'
#' The crs has to be suitable for the coordinates stored in the `Task`.
#' For example, if the coordinates are UTM, `crs` should be set to a
#' UTM projection.
#' Due to a limited axis space in the resulting grid (especially on the x-axis),
#' the data will by default projected into a lat/lon projection, specifically
#' EPSG 4326.
#' If other projections are desired for the resulting map, please set argument
#' `datum` accordingly. This argument will be passed onto [ggplot2::coord_sf].
#'
#' @md
#' @examples
#' \donttest{
#' \dontshow{ if (requireNamespace("cowplot")) \{ }
#' \dontshow{ if (requireNamespace("MASS")) \{ }
#' \dontshow{ if (requireNamespace("sf")) \{ }
#' rdesc = makeResampleDesc("SpRepCV", folds = 5, reps = 4)
#' r = resample(makeLearner("classif.qda"), spatial.task, rdesc)
#'
#' ## -------------------------------------------------------------
#' ## single unnamed resample input with 5 folds and 2 repetitions
#' ## -------------------------------------------------------------
#'
#' plots = createSpatialResamplingPlots(spatial.task, r, crs = 32717,
#' repetitions = 2, x.axis.breaks = c(-79.065, -79.085),
#' y.axis.breaks = c(-3.970, -4))
#' cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 2,
#' labels = plots[["Labels"]])
#'
#' ## --------------------------------------------------------------------------
#' ## single named resample input with 5 folds and 1 repetition and 32717 datum
#' ## --------------------------------------------------------------------------
#'
#' plots = createSpatialResamplingPlots(spatial.task, list("Resamp" = r),
#' crs = 32717, datum = 32717, repetitions = 1)
#' cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 1,
#' labels = plots[["Labels"]])
#'
#' ## -------------------------------------------------------------
#' ## multiple named resample inputs with 5 folds and 1 repetition
#' ## -------------------------------------------------------------
#'
#' rdesc1 = makeResampleDesc("SpRepCV", folds = 5, reps = 4)
#' r1 = resample(makeLearner("classif.qda"), spatial.task, rdesc1)
#' rdesc2 = makeResampleDesc("RepCV", folds = 5, reps = 4)
#' r2 = resample(makeLearner("classif.qda"), spatial.task, rdesc2)
#'
#' plots = createSpatialResamplingPlots(spatial.task,
#' list("SpRepCV" = r1, "RepCV" = r2), crs = 32717, repetitions = 1,
#' x.axis.breaks = c(-79.055, -79.085), y.axis.breaks = c(-3.975, -4))
#' cowplot::plot_grid(plotlist = plots[["Plots"]], ncol = 5, nrow = 2,
#' labels = plots[["Labels"]])
#'
#' ## -------------------------------------------------------------------------------------
#' ## Complex arrangements of multiple named resample inputs with 5 folds and 1 repetition
#' ## -------------------------------------------------------------------------------------
#'
#' p1 = cowplot::plot_grid(plots[["Plots"]][[1]], plots[["Plots"]][[2]],
#' plots[["Plots"]][[3]], ncol = 3, nrow = 1, labels = plots[["Labels"]][1:3],
#' label_size = 18)
#' p12 = cowplot::plot_grid(plots[["Plots"]][[4]], plots[["Plots"]][[5]],
#' ncol = 2, nrow = 1, labels = plots[["Labels"]][4:5], label_size = 18)
#'
#' p2 = cowplot::plot_grid(plots[["Plots"]][[6]], plots[["Plots"]][[7]],
#' plots[["Plots"]][[8]], ncol = 3, nrow = 1, labels = plots[["Labels"]][6:8],
#' label_size = 18)
#' p22 = cowplot::plot_grid(plots[["Plots"]][[9]], plots[["Plots"]][[10]],
#' ncol = 2, nrow = 1, labels = plots[["Labels"]][9:10], label_size = 18)
#'
#' cowplot::plot_grid(p1, p12, p2, p22, ncol = 1)
#' \dontshow{ \} }
#' \dontshow{ \} }
#' \dontshow{ \} }
#' }
#' @export
createSpatialResamplingPlots = function(task = NULL, resample = NULL, crs = NULL,
datum = 4326, repetitions = 1, color.train = "#0072B5", color.test = "#E18727",
point.size = 0.5, axis.text.size = 14, x.axis.breaks = waiver(),
y.axis.breaks = waiver()) {
requireNamespace("sf", quietly = TRUE)
# some checks
if (is.null(crs)) {
stopf("Please specify a crs that matches the coordinates of the task.")
}
if (task$task.desc$has.coordinates == FALSE) {
stopf("The supplied task needs to have coordinates.")
}
if (!identical(as.integer(rownames(task$env$data)),
1:length(task$env$data[, 1]))) {
rownames(task$env$data) = seq(1:length(task$env$data[, 1]))
}
# in case one supplies only one resample object, wrap it into a list
# to work with map()
if (!class(resample)[1] == "list") {
resample = list(resample)
}
# how many resamp objects do we have?
n.resamp = length(resample)
if (n.resamp > 1 && is.null(names(resample))) {
length.n.resamp = length(resample)
names(resample) = seq_len(length.n.resamp)
}
# create plot list with length = folds
nfolds = resample[[1]]$pred$instance$desc$folds
plot.list.out.all = lapply(resample, function(r) {
# bind coordinates to data
data = cbind(task$env$data, task$coordinates)
# create 'sf' object
data = sf::st_as_sf(data, coords = names(task$coordinates), crs = crs)
# create plot list with length = folds
plot.list = rep(list(data), nfolds * repetitions)
plot.list.out = imap(plot.list, function(.x, .y) {
ggplot(.x) +
geom_sf(data = subset(.x, as.integer(rownames(.x)) %in%
r$pred$instance[["train.inds"]][[.y]]),
color = color.train, size = point.size, ) +
geom_sf(data = subset(.x, as.integer(rownames(.x)) %in%
r$pred$instance[["test.inds"]][[.y]]),
color = color.test, size = point.size) +
scale_x_continuous(breaks = x.axis.breaks) +
scale_y_continuous(breaks = y.axis.breaks) +
coord_sf(datum = sf::st_crs(datum)) +
theme(axis.text.x = element_text(size = axis.text.size),
axis.text.y = element_text(size = axis.text.size),
plot.margin = unit(c(0.5, 0.2, 0.2, 0.2), "cm"))
})
return(plot.list.out)
})
plot.list = unlist(plot.list.out.all, recursive = FALSE)
# more than 1 repetition?
if (repetitions > 1) {
labels = c(length = nfolds * repetitions)
nfolds.reps = rep(seq_len(nfolds), repetitions)
reps.nfolds = vector()
names.resample = vector()
for (i in seq_len(repetitions)) {
reps.nfolds = c(reps.nfolds, rep(i, nfolds))
if (!is.null(names(resample))) {
names.resample = c(names.resample, rep(names(resample)[i],
nfolds * repetitions))
}
}
# account for multiple resamp objects
if (n.resamp > 1) {
labels = rep(rep(sprintf("[%s] Fold %s (Rep %s)", names.resample,
nfolds.reps, reps.nfolds)), n.resamp)
} else {
if (!is.null(names(resample))) {
labels = sprintf("[%s] Fold %s (Rep %s)",
rep(names(resample), nfolds * repetitions),
seq_len(nfolds), reps.nfolds)
} else {
labels = rep(sprintf("Fold %s (Rep %s)", nfolds.reps, reps.nfolds))
}
}
} else {
# account for multiple resamp objects
if (n.resamp > 1) {
names.resample = vector()
for (i in seq_len(length(names(resample)))) {
names.resample = c(names.resample, rep(names(resample)[i], nfolds))
}
labels = sprintf("[%s] Fold %s", names.resample, seq_len(nfolds))
labels = rep(labels, n.resamp)
} else {
if (!is.null(names(resample))) {
labels = sprintf("[%s] Fold %s", rep(names(resample), nfolds),
seq_len(nfolds))
} else {
labels = sprintf("Fold %s", seq_len(nfolds))
}
}
}
return(invisible(list("Plots" = plot.list, "Labels" = labels)))
}
|